• Title/Summary/Keyword: Waveguide Sensor

Search Result 123, Processing Time 0.023 seconds

Soft Optical Waveguide Sensors Tuned by Reflective Pigmentation for Robotic Applications (로봇 어플리케이션을 위해 반사 색소로 조정된 소프트 광도파로 센서)

  • Jamil, Babar;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • Soft robotics has attracted a huge amount of interest in the recent decade or so, be it either actuators or sensors. Recently, a soft optical waveguide sensor has proven its effectiveness for various sensing applications such as strain, force, and bending measurements. The operation principle of the waveguide is simple, but the present technology is far too much complex to manufacture the waveguide. The waveguide fails to attract various practical applications in comparison to other types of sensors despite its superior safety and ease working principle. This study pursues to develop the soft sensors based on the optical phenomena so that the waveguide can be easily manufactured and its design can be conducted. Several physical properties of the waveguide are confirmed through the repetitive experiments in the aspects of strain, force, and bending of the waveguide. Finally, the waveguide sensor is embedded inside the actuator to verify the effectiveness of the proposed waveguide as well as to extend the application fields of the waveguide sensor.

Fabrication of Planar Type Optical Waveguide for the Application of Biosensor and Detection Characteristics of Staphylococcus Aureus (바이오센서용 평판형 광도파로 센서 제작 및 황색포도상구균 검출 특성)

  • Kim, Jun-Hyong;Yang, Hoe-Young;Yu, Chong-Hee;Lee, Hyun-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.223-223
    • /
    • 2009
  • In this paper, designed and simulated Power Splitter (PS) integrated Mach-Zehnder interferometer (MZI) based planar type optical waveguide devices (which is called here a PS-MZI). The PS-MZI optical waveguide sensor was preceded by a Y-junction, which splits the input power between the sensor, and a reference branch, to minimize the effect of optical power variations. The PS-MZI optical waveguide sensor induced changing phases of the incident beam, which had fallen upon the waveguide through computer simulation, according to the small changes in the index of refraction, thus beam intensity was changed. The waveguide were optimized at a wavelength of 1550 nm and fabricated according to the design rule of 0.45 delta%, which is the difference of refractive index between the core and clad. The fabrication of PS-MZI optical waveguide sensor was performed by a conventional planar lightwave circuit (PLC) fabrication process. The PS-MZI optical waveguide that was fabricated to be applied as a biosensor revealed a low insertion loss and a low polarization-dependent loss. After having etched the over-clad at the sensor part in the MZI optical waveguide that was fabricated, Ti deposition was made on the adhesion layer, and then Au thin-film deposition was carried out thereon. In addition, its optical properties were measured by having changed the index of refraction oil at the sensing part of the MZI. To apply the planar type PS-MZI optical waveguide as a biosensor, a detection test for Staphylococcus aureus was conducted according to changes in concentration, having adopted Ti-alkoxide as ligand. The detection result of the S. aureus by the PS-MZI optical waveguide sensor was possible to the level of $10^1$ CFU/ml.

  • PDF

Computational analysis of the effect of SOI vertical slot optical waveguide specifications on integrated-optic biochemical waveguide wensitivity

  • Jung, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.395-407
    • /
    • 2021
  • The effect of the specifications of a silicon-on-insulator vertical slot optical waveguide on the sensitivity of homogeneous and surface sensing configurations for TE and TM polarization, respectively, was systematically analyzed using numerical software. The specifications were optimized based on the confinement factor and transmission power of the TE-guided mode distributed in the slot. The waveguide sensitivities of homogeneous and surface sensing were calculated according to the specifications of the optimized slot optical waveguide.

Thin-film optical waveguide $K^{+}$-ion sensor using the evanescent field absorption (소산장 흡수를 이용한 박막 광도파로형 칼륨이온센서)

  • Lee, Su-Mi;Koh, Kwang-Nak;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.214-220
    • /
    • 1997
  • A thin film optical waveguide sensor has been developed to measure and analyze quantitatively some inherent optical properties of biochemical substances. In this paper, two different kinds of thickness of thin film waveguide were prepared by RF sputtering of Corning-7059 glass(n = 1.588 at ${\lambda}=\;514nm$, Ar laser) on Pyrex glass substrates. We made a sensing membrane coated on the thin film waveguide with the poly(vinyl chloride-co-vinyl acetate-co-vinyl alcohol) (91 : 3 : 6) copolymer membrane based on $H^{+}$-selective chromoionophore and $K^{+}$-selective neutral ionophore and then proposed the thin film opptical waveguide ion sensor which can select a potassium ion. This sensor based ell the absorbance change by utilizing chromoionophore and neutral ionophore, which changes their absorption spectrum in the UV-vis region upon complexation of the corresponding ionic species, have been reported. The sensitivity dependence of the proposed sensor on interaction length, waveguide thickness, and content of a chromoionophore was investigated. This sensor has the measurement range of $10^{-6}M{\sim}1M$ for $K^{+}$ concentration and 90% response time of duration within 1 min. Also, our thin film optical waveguide sensor using the evanescent field was investigated as compared with conventional transmission sensor or optode sensor by the optical fiber. The sensitivity of thin-film waveguide $K^{+}$ sensor is higher than that of the conventional transmission sensor. The proposed sensor is expected to be useful to biochemical, medical, environmental inspection and so on.

  • PDF

Planar Optical Waveguide Temperature Sensor Based on Etched Bragg Gratings Considering Nonlinear Thermo-optic Effect

  • Ahn, Kook-Chan;Lee, Sang-Mae;Jim S. Sirkis
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.309-319
    • /
    • 2001
  • This paper demonstrates the development of optical temperature sensor based on the etched silica-based planar waveguide Bragg grating. Topics include design and fabrication of the etched planar waveguide Bragg grating optical temperature sensor. The typical bandwidth and reflectivity of the surface etched grating has been ∼0.2nm and ∼9%, respectively, at a wavelength of ∼1552nm. The temperature-induced wavelength change is found to be slightly non-linear over ∼200$^{\circ}C$ temperature range. Typically, the temperature-induced fractional Bragg wavelength shift measured in this experiment is 0.0132nm/$^{\circ}C$ with linear curve fit. Theoretical models with nonlinear temperature effect for the grating response based on waveguide and plate deformation theories agree with experiments to within acceptable tolerance.

  • PDF

Design and Analysis of Refractometer Based on Bend Waveguide Structure with Air Trench for Optical Sensor Applications

  • Ryu, Jin Hwa;Lee, Woo-Jin;Lee, Bong Kuk;Do, Lee-Mi;Lee, Kang Bok;Um, Namkyoung;Baek, Kyu-Ha
    • ETRI Journal
    • /
    • v.36 no.5
    • /
    • pp.841-846
    • /
    • 2014
  • This study proposes a novel optical sensor structure based on a refractometer combining a bend waveguide with an air trench. The optical sensor is a $1{\times}2$ splitter structure with a reference channel and a sensing channel. The reference channel has a straight waveguide. The sensing channel consists of a U-bend waveguide connecting four C-bends, and a trench structure to partially expose the core layer. The U-bend waveguide consists of one C-bend with the maximum optical loss and three C-bends with minimum losses. A trench provides a quantitative measurement environment and is aligned with the sidewall of the C-bend having the maximum loss. The intensity of the output power depends on the change in the refractive index of the measured material. The insertion loss of the proposed optical sensor changes from 3.7 dB to 59.1 dB when the refractive index changes from 1.3852 to 1.4452.

Optical waveguide structure design of Non-dispersive Infrared (NDIR) CO2 gas sensor for high-sensitivity (이산화탄소 검출을 위한 고감도 비분산 적외선 가스센서의 광도파관 구조 설계)

  • Yoon, Jiyoung;Lee, Junyeop;Do, Namgon;Jung, Daewoon
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.331-336
    • /
    • 2021
  • The Non-dispersive Infrared (NDIR) gas sensor has high selectivity, measurement reliability, and long lifespan. Thus, even though the NDIR gas sensor is expensive, it is still widely used for carbon dioxide (CO2) detection. In this study, to reduce the cost of the NDIR CO2 gas sensor, we proposed the new optical waveguide structure design based on ready-made gas pipes that can improve the sensitivity by increasing the initial light intensity. The new optical waveguide design is a structure in which a part of the optical waveguide filter is inclined to increase the transmittance of the filter, and a parabolic mirror is installed at the rear end of the filter to focus the infrared rays passing through the filter to the detector. In order to examine the output characteristics of the new optical waveguide structure design, optical simulation was performed for two types of IR-source. As a result, the new optical waveguide structure can improve the sensitivity of the NDIR CO2 gas sensor by making the infrared rays perpendicular to the filter, increasing the filter transmittance.

Optical Temperature Sensor Based on the Etched Planar Waveguide Bragg Grating Considering Linear Thermo-optic Effect (평면 광도파로 상의 식각 브래그 격자를 이용한 광온도 센서의 개발)

  • Kook-Chan Ahn;Sang-Mae Lee
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.2
    • /
    • pp.121-129
    • /
    • 2001
  • This paper demonstrates the development of optical temperature sensor based on the etched planar waveguide Bragg grating. Topics include design and fabrication of the etched planar waveguide Bragg grating, investigation of the grating reflection characteristics, and temperature measurement capabilities. The typical bandwidth and reflectivity of the surface etched grating has been ~0.2nm and ~7%, respectively, at a wavelength of ~1552nm. The temperature-induced wavelength change of the optical sensor is found to be slightly non-linear over ~20$0^{\circ}C$ temperature range. Theoretical models for the grating response of the sensor based on waveguide and plate deformation theories agree with experiments to within acceptable tolerance.

  • PDF

High Sensitive Fiber Optic Temperature Sensor Based on a Side-polished Single-mode Fiber Coupled to a Tapered Multimode Overlay Waveguide

  • Prerana, Prerana;Varshney, Ravendra Kumar;Pal, Bishnu Pada;Nagaraju, Bezwada
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.337-341
    • /
    • 2010
  • A high sensitivity fiber optic temperature sensor based on a side-polished fiber (SPF) coupled to a tapered multimode overlay waveguide (MMOW) is proposed and studied. Both tapered and non-tapered MMOW were considered to study the effect of tapering of MMOW on the characteristics of the device and to investigate the criticality of the uniformity of the multimode overlay waveguide over the SPF. Present study shows that tapering of the MMOW can be used to tune the desired wavelength range without any loss in the sensitivity. Sensitivity up to 9 nm/$^{\circ}C$ within the temperature range of 25 to $100^{\circ}C$ can be achieved with the proposed sensor, almost 6 times higher compared even to state-of-the-art high-sensitivity grating-based fiber optic temperature sensors.

Development of Ultrasonic Waveguide Sensor for Under=Sodium Viewing in Liquid Metal Reactor (액체금속로 소듐내부 가시화를 위한 초음파 웨이브가이드 센서 개발)

  • Joo, Young-Sang;Lee, Jae-Han
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.1
    • /
    • pp.18-24
    • /
    • 2006
  • Reactor core and internal structures of a liquid metal reactor (LMR) can not be visually examined due to an opaque liquid sodium. The under-sodium viewing technique by using an ultrasonic wave should be applied far the visual inspection of reactor internals. In this study, an ultrasonic waveguide sensor with a strip plate has been developed for an application to the under-sodium viewing technique. The Lamb wave propagation of a waveguide sensor has been analyzed and the zero-order antisymmetric $A_0$ plate wave was selected as the application mode of the sensor. The $A_0$ plate wave can be propagated in the dispersive low frequency range by using a liquid wedge clamped to the waveguide. A new technique is presented which is capable of steering the radiation beam angle of a waveguide sensor without a mechanical movement of the sensor assembly The steering function of the ultrasonic radiation beam can be achieved by a frequency tuning method of the excitation pulse in the dispersive range of the $A_0$ mode. The technique provides an opportunity to overcome the scanning limitation of a waveguide sensor. The beam steering function has been evaluated by an experimental verification. The ultrasonic C-scanning experiments are performed in water and the feasibility of the ultrasonic waveguide sensor has been verified.