• Title/Summary/Keyword: Waveguide

Search Result 1,898, Processing Time 0.034 seconds

Design of Compact CPW-fed Slot Antenna Using Split-Ring Resonators (분할 링 공진기를 이용한 소형 CPW급전 슬롯 안테나 설계)

  • Park, Jin-Taek;Yeo, Junho;Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2351-2358
    • /
    • 2014
  • In this paper, a design method for a compact CPW-fed slot antenna using SRRs is studied. The structure of the proposed slot antenna is a rectangular slot antenna loaded with SRR conductors inside the slot to reduce the antenna size. Optimal design parameters are obtained by analyzing the effects of the gap between the SRR conductors and slot, and the width of the SRR conductors on the input VSWR characteristic. The optimized compact slot antenna operating at 2.45 GHz band is fabricated on an FR4 substrate with a dimension of 36 mm by 30 mm. The length of the proposed compact slot antenna is reduced to 14.3% compared to that of a conventional rectangular slot antenna. Experiment results show that the antenna has a desired impedance characteristic with a frequency band of 2.4-2.49 GHz for a VSWR < 2, and measured gain of 2.3 dBi at 2.45 GHz.

CPW-fed Wideband Loop Antenna for Indoor Digital TV Applications (실내 디지털 TV용 CPW-급전 광대역 루프 안테나)

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.8
    • /
    • pp.1492-1497
    • /
    • 2017
  • In this paper, a design method for a CPW-fed wideband loop antenna for indoor digital TV applications is studied. The proposed loop antenna consists of a square loop and two circular sectors which connect the loop with central feed points, and the CPW feed line is inserted in the lower circular sector. The CPW feed line is designed to match with the 75 ohm port impedance for DTV applications, and the ground slots are etched in order to improve the impedance matching in the middle frequency region. The effects of the gap between the circular sectors and the location and dimension of the ground slots on the input reflection coefficient and gain characteristics are examined to obtain the optimal design parameters. The optimized antenna is fabricated on FR4 substrate, and the experiment results show that it operates in the frequency band of 463-1,280 MHz for a VSWR < 2, which assures the operation in the DTV band.

Design of CPW-fed Slot Antenna for Harmonic Suppression (고조파 억제를 위한 CPW급전 슬롯 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.19-25
    • /
    • 2015
  • In this paper, a design method for a CPW-fed slot antenna for harmonic suppression is studied. The structure of the proposed slot antenna is a rectangular slot antenna appended with stepped impedance resonators (SIRs) at both ends of the slot symmetrically. Optimal design parameters are obtained by analyzing the effects of the length and width of the SIRs on the input reflection coefficient. The optimized harmonic-suppressed slot antenna operating at 2.45 GHz WLAN band is fabricated on an FR4 substrate with a dimension of 42 mm by 30 mm. The slot length of the proposed harmonic-suppressed slot antenna is reduced to 33.3% compared to that of a conventional rectangular slot antenna owing to the appended SIRs. Experiment results show that the antenna has a desired impedance characteristic with a frequency band of 2.39-2.49 GHz for a VSWR < 2, and a measured gain of 2.5 dBi at 2.45 GHz.

CONCEPTUAL DESIGN OF THE SODIUM-COOLED FAST REACTOR KALIMER-600

  • Hahn, Do-Hee;Kim, Yeong-Il;Lee, Chan-Bock;Kim, Seong-O;Lee, Jae-Han;Lee, Yong-Bum;Kim, Byung-Ho;Jeong, Hae-Yong
    • Nuclear Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.193-206
    • /
    • 2007
  • The Korea Atomic Energy Research Institute has developed an advanced fast reactor concept, KALIMER-600, which satisfies the Generation IV reactor design goals of sustainability, economics, safety, and proliferation resistance. The concept enables an efficient utilization of uranium resources and a reduction of the radioactive waste. The core design has been developed with a strong emphasis on proliferation resistance by adopting a single enrichment fuel without blanket assemblies. In addition, a passive residual heat removal system, shortened intermediate heat-transport system piping and seismic isolation have been realized in the reactor system design as enhancements to its safety and economics. The inherent safety characteristics of the KALIMER-600 design have been confirmed by a safety analysis of its bounding events. Research on important thermal-hydraulic phenomena and sensing technologies were performed to support the design study. The integrity of the reactor head against creep fatigue was confirmed using a CFD method, and a model for density-wave instability in a helical-coiled steam generator was developed. Gas entrainment on an agitating pool surface was investigated and an experimental correlation on a critical entrainment condition was obtained. An experimental study on sodium-water reactions was also performed to validate the developed SELPSTA code, which predicts the data accurately. An acoustic leak detection method utilizing a neural network and signal processing units were developed and applied successfully for the detection of a signal up to a noise level of -20 dB. Waveguide sensor visualization technology is being developed to inspect the reactor internals and fuel subassemblies. These research and developmental efforts contribute significantly to enhance the safety, economics, and efficiency of the KALIMER-600 design concept.

A Inclined Slot-excited Circular Plasma Source with a Cusp Magnetic Field

  • You, H.J.;Kim, D.W.;Koo, M.;Jang, S.W.;Jung, Y.H.;Lee, B.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.435-435
    • /
    • 2010
  • A inclined slot-excited plasma source is newly designed and constructed for higher flux HNB(Hyperthermal Neutral Beam) generation. The present source is different from the vertical SLAN(SLot ANtenna) sources [1] in two aspects. One is that the slots are inclined, and the other is that the magnetic field is configured to a cusp type. These modifications are intended to make the source plasma operated in sub-milli-torr pressure regime and as thin as possible, both of which is to get higher HNB flux by decreasing the re-ionization rate of the reflected atoms from the neutralizer [2]. The plasma is generated in a quartz tube of internal diameter 170 mm enclosed in a aluminum application chamber of larger diameter 250 mm. The microwave power is fed to the plasma chamber by 8 inclined slots cut into the application chamber wall. The slots are coupled the chamber to a WR280 waveguide wound around it to form a ring resonator. In order to make two slots $\lambda_g/2$ apart in phase, the adjacent slots are rotated in opposite directions. The rotation angle of the slots are set to $60^{\circ}$ from the chamber axis. Between the quartz chamber and the aluminum cylindrical chamber 8 NdFeB magnets are equally spaced and fixed to form the cusp magnetic field confinement and ECR (Electron Cyclotron Resonance) field. In this presentation, the magnetic and electromagnetic simulations, and the measured plasma parameters are given for both the inclined and the vertical slot-excited plasma sources. We also discuss how the sources can be tailored to suit better-performing HNB sources.

  • PDF

Microwave Propagation in the Plasma for 28 GHz Superconducting ECRIS (28 GHz 초전도 ECRIS 플라즈마에서의 마이크로파 전파)

  • Wang, S.J.;Won, M.S.;Lee, B.S.;Kim, S.H.;Kwak, J.G.;Jeong, S.H.;Kim, S.K.;An, C.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.6
    • /
    • pp.467-474
    • /
    • 2010
  • Packet propagation and absorption for the 28 GHz superconducting ECRIS under developing by KBSI Pusan center is analyzed with limited parameter range. The microwave power generated by 28 GHz gyrotron is axially injected to the plasma cavity through waveguide system. According to the analytical ray tracing calculation, the wave packet launched quasi-longitudinally at a high magnetic field side changes its direction from outward to inward as it is approaching resonance layer. Therefore, initially diverging wave does not likely hit a conducting surface before absorbing by electron cyclotron resonance. Also, absorption by plasma with moderate electron density is so strong that reflection by an extraction plate may not be expected.

Stimulated Emission with 349-nm Wavelength in GaN/AlGaN MQWs by Optical Pumping

  • Kim, Sung-Bock;Bae, Sung-Bum;Ko, Young-Ho;Kim, Dong Churl;Nam, Eun-Soo
    • Applied Science and Convergence Technology
    • /
    • v.26 no.4
    • /
    • pp.79-85
    • /
    • 2017
  • The crack-free AlGaN template has been successfully grown by using selective area growth with triangular GaN facet. The triangular GaN stripe structure was obtained by vertical growth rate enhanced mode with low growth temperature of $950^{\circ}C$ and high growth pressure of 500 torr. The lateral growth rate enhanced mode of AlGaN for crack-free and flat surface was also investigated. Low pressure of 30 torr and high V/III ratio of 4400 were favorable for lateral growth of AlGaN. It was confirmed that the $4{\mu}m$ -thick $Al_{0.2}Ga_{0.8}N$ was crack-free over entire 2-inch wafer. The dislocation density of $Al_{0.2}Ga_{0.8}N$ was as low as ${\sim}7.6{\times}10^8/cm^2$ measured by cathodoluminescence. Based on the high quality AlGaN with low dislocation density, the ultraviolet laser diode epitaxy with cladding, waveguide and GaN/AlGaN multiple quantum well (MQW) was grown by metalorganic chemical vapor deposition. The stimulated emission at 349 nm with full width at half maximum of 1.8 nm from the MQW was observed through optical pumping experiment with 193 nm KrF laser. We also have fabricated the deep ridge type ultraviolet laser diode (UV-LD) with $5{\mu}m-wide$ and $700{\mu}m-long$ cavity for electrical properties. The turn on voltage was below 5 V and the resistance was ${\sim}55{\Omega}$ at applied voltage of 10 V. The amplified spontaneous emission spectrum of UV-LD was also observed from pulsed current injection.

Detection of the Defect on the Metal Surface Using the Modulated Microwave (변조 고주파에 의한 금속표면 결함 검출)

  • Joo, G.T.;Jung, S.H.;Song, K.Y.;Kim, J.O.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.3
    • /
    • pp.173-179
    • /
    • 1999
  • The defects on the metal surface. such as the ended circular pressed hole. the penetrated circular drilled hole, and the linear hollow lanes have been investigated by means of the microwave. In this experiment, frequency was set at 9.2GHz with 3kHz modulation, and the methods of reflection, transmission, fixed carrier frequency, and mod-demodulated technique have been used for investigating defects. The magnitudes of the microwave signals have been changed at the ended circular pressed hole and the penetrated circular drilled hole. The defect sizes that were estimated from the reflected microwave signals had the dimensions enlarged by twice the original size of the penetrated circular drilled hole and 2.5 times the original size of the ended circular pressed hole. The magnitudes of the reflected microwave signals from the linear hollow lane have increased with expansion of the width of the notch. In the linear hollow lane with the depth of 2.4mm, the reflected microwave signals versus the defect widths had a maximum value at the defect width of 50mm, and in the linear hollow lanes with the depths of 1.2mm and 0.45mm, the reflected microwave signals versus the defects widths had the maximum values each at the defect depths of 55mm.

  • PDF

WDM/TDM-Based Channel Allocation Methodology in Optical Network-on-Chip (광학 네트워크-온-칩에서 WDM/TDM 기반 채널 할당 기법)

  • Hong, Yu Min;Lee, Jae Hoon;Han, Tae Hee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.7
    • /
    • pp.40-48
    • /
    • 2015
  • An optical network-on-chip(ONoC) architecture is emerging as a new paradigm for solving on-chip communication bottleneck. Recent studies on ONoC have been focusing on supporting the parallel transmission and avoiding path collisions using wavelength division multiplexing(WDM). However, since the maximum number of wavelengths, which a single waveguide can accommodate is limited by crosstalk and insertion loss. Therefore previous WDM studies based on incrementing the number of different wavelengths according to the number of nodes would be infeasible due to the implementation complexity. To solve such problems, we combined time division multiplexing(TDM) and wavelength-routed ONoC, along with an optimized channel allocation algorithm, which can minimize the number of extra wavelength channels and latency caused by combining TDM scheme.

Design of Optical Filter Structure for DWDM (DWDM을 위한 광필터의 구조)

  • Jeoung, Chan-Gwoun;Ra, Yoo-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.7
    • /
    • pp.1359-1366
    • /
    • 2007
  • The recent, a large capacity of communication is required in order to it is in proportion to capacity of information communication increase and to satisfy a demand because of the demand about Internet, a multimedia service of Video of internet protocol(VoIP), Audio/Video steaming. DWDM(Dense Wavelength Division Multiplexing) technique has been emerged as the method of solving it without additional optical fiber network building and hish-speed equipment. Therefore this thesis proposed the optical filter of fiber/multilayer slab coupled structure combining it to multilayer slab waveguide by polishing the cladding of one side of fiber to design the optical filter having these functions. The optical filter proposed as the simulation result satisfies DWDM filter characteristic; 1) when the separation distance between fiber and slab is $4.15{\mu}m$ at the communication window of $1.5{\mu}m$, the polarization independence is 65nm, 2) when the center wavelengths about TM mode and TE mode are each ${\lambda}_0=1.54946\;{\mu}m$ and ${\lambda}_0=1.6144\;{\mu}m$ and, FWHM(Full at Half Maximun) is 0.1nm.