• Title/Summary/Keyword: Waveform model

Search Result 279, Processing Time 0.033 seconds

Complexity Estimation Based Work Load Balancing for a Parallel Lidar Waveform Decomposition Algorithm

  • Jung, Jin-Ha;Crawford, Melba M.;Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.6
    • /
    • pp.547-557
    • /
    • 2009
  • LIDAR (LIght Detection And Ranging) is an active remote sensing technology which provides 3D coordinates of the Earth's surface by performing range measurements from the sensor. Early small footprint LIDAR systems recorded multiple discrete returns from the back-scattered energy. Recent advances in LIDAR hardware now make it possible to record full digital waveforms of the returned energy. LIDAR waveform decomposition involves separating the return waveform into a mixture of components which are then used to characterize the original data. The most common statistical mixture model used for this process is the Gaussian mixture. Waveform decomposition plays an important role in LIDAR waveform processing, since the resulting components are expected to represent reflection surfaces within waveform footprints. Hence the decomposition results ultimately affect the interpretation of LIDAR waveform data. Computational requirements in the waveform decomposition process result from two factors; (1) estimation of the number of components in a mixture and the resulting parameter estimates, which are inter-related and cannot be solved separately, and (2) parameter optimization does not have a closed form solution, and thus needs to be solved iteratively. The current state-of-the-art airborne LIDAR system acquires more than 50,000 waveforms per second, so decomposing the enormous number of waveforms is challenging using traditional single processor architecture. To tackle this issue, four parallel LIDAR waveform decomposition algorithms with different work load balancing schemes - (1) no weighting, (2) a decomposition results-based linear weighting, (3) a decomposition results-based squared weighting, and (4) a decomposition time-based linear weighting - were developed and tested with varying number of processors (8-256). The results were compared in terms of efficiency. Overall, the decomposition time-based linear weighting work load balancing approach yielded the best performance among four approaches.

Full waveform inversion by objective functions with power and integral (지수 및 적분을 포함한 목적함수에 의한 파형역산)

  • Ha, Wan-Soo;Pyun, Suk-Joon;Shin, Chang-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.130-134
    • /
    • 2007
  • Classical full waveform inversion for velocity estimation defines the objective function as the $l^2$ -norm of differences between the modeled and the observed wavefields. Although widely used, the results of this method have been less than satisfactory. A moderate improvement of this method is to define the objective function as the $l^2$ -norm of differences between the logarithms of the modeled and observed wavefields. In this paper we propose new objective functions of waveform inversion. They produce better results in sub-salt imaging than those of the classical and the logarithmic objective functions. One objective function defines the residual as the difference between $L^{th}$ power of the modeled wavefields and that of the observed wavefields. Another defines the residual as the difference between the integral of the $L^{th}$ power of the modeled wavefields and that of the observed wavefields. We apply these new objective functions to the synthetic SEG/EAGE salt model, and show that our new waveform inversion algorithms provide more accurate results than those of the classical and logarithmic waveform inversion methods.

  • PDF

Connected Characteristics for Small Generation Source of Low Voltage Model Grids (저압 모의선로에 소형발전원 연계시 특성)

  • Lee, Sang-Woo;Kang, Jin-Kyu;Lee, Dong-Ha;Park, Tae-Joon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.2
    • /
    • pp.45-53
    • /
    • 2013
  • In this paper, we analyze the typical phase voltage and line current waveform characteristics of the distribution system with 3 phase small synchronous generation source in case with load and non-load group, in order to investigate the power quality for end load connected of generation source. As demonstrated by our experimental results, the distortion and power quality of phase voltage and line current waveform were relatively good for low voltage 3 phase model grids connected of 3 phase small synchronous generation source in case with non-load group. However, distortion and power quality of voltage and current waveform was poor for low voltage 3 phase model grids connected to 3 phase small synchronous generation source in the load group with some phase voltage and frequency difference. From the above results, we conclude that the phase voltage and frequency of 3 phase generation source must be identical to that of distribution system source to maximize the power quality. Also, special attention is required in case of having load group or non-load group to 3 phase generation source.

Finite Element Analysis of Magnetostriction Force in Transformer Based on an Anisotropic Magnetostriction Model (이방성 자왜 모델을 기반으로 한 변압기 자왜력의 유한요소 해석)

  • Zhu, Lixun;Jeong, Gilgyun;Koh, Chang-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.772-773
    • /
    • 2015
  • This paper presents a dynamic model of 2-D magnetostriction in electrical steel sheet (ESS) under rotating flux magnetization conditions and its implementation in finite element method (FEM). For an arbitrary waveform of magnetic flux density (B), the corresponding magnetostriction waveform can be predicted by the model. In order to apply the model to FEM easily, the model is based on trilinear interpolation method. As an example, the model is applied to a three-phase transformer constructed by highly grain-oriented electrical steel sheets and the numerical results by the magnetostriction model are discussed.

  • PDF

Frequency Domain Waveform Inversion Using $l_1$ -norm ($l_1$-norm을 이용한 주파수 영역 파형역산)

  • Pyun, Suk-Joon;Shin, Chang-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.118-123
    • /
    • 2007
  • A robust objective function in the frequency domain is applied to the acoustic full waveform inversion. The proposed objective function is defined as $l_1$-norm of residual wavefields in the frequency domain. Generally, the full waveform inversion is extremely sensitive to a number of factors such as parameterization, initial model, noise and so on. The numerical tests were performed for checking the sensitivity to attenuation and several noises. For the comparison with other objective functions, the conventional least-squares method and the logarithmic method were tested under the same condition. The synthetic data examples show that the proposed algorithm is more robust than the well-known methods.

  • PDF

PERFORMANCE IMPROVEMENT OF IMPULSE RAD10S IN MULTICARRIER ENVIRONMENTS

  • Lee, Hojoon;Byungchil Han;Sungbin Im
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.144-147
    • /
    • 2000
  • In this paper, we propose two receiver structures of the impulse radio (IR) system to improve its performance in multipath environments. Recently, the impulse radio system has drawn much attention for future high-speed wire-less communication services. The conventional IR receiver directly correlates received signals with the ideal reference waveform, which results in performance degradation in multipath environments. The Key idea of the proposed receiver structures is to reflect the multipath Characteristics into the IR receiver. One is to deconvolve the received waveform with estimates of the multipath gains to obtain the transmitted waveform while the other is to modify the reference waveform of the correlator according to the estimates of the multipath gains. We examine the performance of the proposed schemes for the statistical indoor wireless communication channel model using computer simulation.

  • PDF

A Study of Waveform Inversion for Improvement of Sub-Salt Migration Image (암염돔 하부 구조의 구조보정 영상 개선을 위한 파형역산 기법 연구)

  • Ha, Wan-Soo;Pyun, Suk-Joon;Son, Woo-Hyun;Shin, Chang-Soo;Ko, Seung-Won;Seo, Young-Tak
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.177-183
    • /
    • 2008
  • The sub-salt imaging technique becomes more crucial to detect the hydro-carbonates in petroleum exploration as the target reservoirs get deeper. However, the weak reflections from the sub-salt structures prevent us from obtaining high fidelity sub-salt image. As an effort to overcome this difficulty, we applied the waveform inversion by implementing multi-grid technique to the sub-salt imaging. Through the comparison between the conventional waveform inversion using fixed grid and the multi-grid technique, we confirmed that the waveform inversion using multi-grid technique has advantages over the conventional fixed grid waveform inversion. We showed that the multi-grid technique can complement he velocity estimation result of the waveform inversion for imaging the sub-salt structures, of which velocity model cannot be obtained correctly by the conventional fixed grid waveform inversion.

Acoustic Full-waveform Inversion using Adam Optimizer (Adam Optimizer를 이용한 음향매질 탄성파 완전파형역산)

  • Kim, Sooyoon;Chung, Wookeen;Shin, Sungryul
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.4
    • /
    • pp.202-209
    • /
    • 2019
  • In this study, an acoustic full-waveform inversion using Adam optimizer was proposed. The steepest descent method, which is commonly used for the optimization of seismic waveform inversion, is fast and easy to apply, but the inverse problem does not converge correctly. Various optimization methods suggested as alternative solutions require large calculation time though they were much more accurate than the steepest descent method. The Adam optimizer is widely used in deep learning for the optimization of learning model. It is considered as one of the most effective optimization method for diverse models. Thus, we proposed seismic full-waveform inversion algorithm using the Adam optimizer for fast and accurate convergence. To prove the performance of the suggested inversion algorithm, we compared the updated P-wave velocity model obtained using the Adam optimizer with the inversion results from the steepest descent method. As a result, we confirmed that the proposed algorithm can provide fast error convergence and precise inversion results.

Full Waveform Inversion using a Cyclic-shot Subsampling and a Reference-shot Subset (주기적 송신원 추출과 참조 송신원 부분집합을 이용한 완전 파형 역산)

  • Jo, Sang Hoon;Ha, Wansoo
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.2
    • /
    • pp.49-55
    • /
    • 2019
  • In this study, we presented a reference-shot subset method for stable convergence of full waveform inversion using a cyclic-shot subsampling technique. Full waveform inversion needs repetitive modeling of wave propagation and thus its calculation time increases as the number of sources increases. In order to reduce the computation time, we can use a cyclic-shot subsampling method; however, it makes the cost function oscillate in the early stage of the inversion and causes a problem in applying the convergence criteria. We introduced a method in which the cost function is calculated using a fixed reference-shot subset while updating the model parameters using the cyclic-shot subsampling method. Through the examples of full waveform inversion using the Marmousi velocity model, we confirmed that the convergence of cost function becomes stable even under the cyclic-shot subsampling method if using a reference-shot subset.

Evaluation of Axial Bearing Capacity of Waveform Micropile by Centrifuge Test (원심모형실험을 통한 파형 마이크로파일의 연직 지지력 평가)

  • Jang, Young-Eun;Han, Jin-Tae;Kim, Jae-Hyun;Park, Heon-Joon;Kim, Sang-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.8
    • /
    • pp.39-49
    • /
    • 2015
  • In this study, a series of centrifuge tests were performed in order to observe the bearing capacity of waveform micropile, a new concept of micropile that uses a modified jet grouting process. A total of six models were considered, conventional micropile, jet grouted pile, and four different shapes of waveform micropiles. The test results indicated that the waveform micropile effectively contributes to the increase of the bearing capacity compared to the micropile without the shear keys. Among the waveform micropiles, the model that has a relatively small space between the shear keys showed the most significant improvement of load capacity. Additionally, the ultimate load capacities of all piles were compared using well-known estimation method. As a result, P-S curve method and total settlement method with 25.4 mm were considered suitable to account ultimate load for the waveform micropile.