• Title/Summary/Keyword: Wave-making problems

Search Result 27, Processing Time 0.02 seconds

Time Domain Analysis of Nonlinear Wave-Making Problems by a Submerged Sphere Oscillating with Forward Speed (전진 동요하는 잠수구에 의한 비선형 조파문제의 시간영역 해석)

  • Ha, Y.R.;Bae, S.Y.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.75-82
    • /
    • 2010
  • In this study, the topics for free-surface wave simulation, nonlinear hydrodynamic force, and the critical resonance frequency of so-called ${\tau}=U{\omega}/g$=1/4 are discussed. A high-order spectral/boundary element method is newly adapted as an efficient numerical tool. This method is one of the most efficient numerical methods by which the nonlinear gravity waves can be simulated and hydrodynamic forces also can be calculated in time domain. In this method, the velocity potential is expressed as the sum of surface potential and body potential. Then, surface potential is solved by using the high-order spectral method and body potential is solved by using the high-order boundary element method. By the combination of these two methods, the wave-making problems by a submerged sphere oscillating with forward speed under the free-surface are solved in time domain.

Time-Domain Analysis of Nonlinear Wave-Making Phenomena by a Submerged Sphere Oscillating with Large Amplitude (대진폭 조화 운동을 하는 잠수구에 의한 비선형 조파현상의 시간영역 해석)

  • Kim, Yong-Jig;Ha, Young-Rok
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.382-385
    • /
    • 2006
  • A high-order spectral/boundary-element method is newly adapted as an efficient numerical tool. In this method, the velocity potential is expressed as the sum of surface potential and body potential. Then, surface potential is solved fly using the high-order spectral method and body potential is solved fly using the high-order boundary element method. Through the combination of these two methods, the wave-making problems fly a submerged sphere moving with the large amplitude oscillation are solved in time-domain. With the example calculations, nonlinear effects on free-surface profiles and hydrodynamic forces are shown and discussed.

  • PDF

Time-Domain Analysis of Nonlinear Wave-Making Problems by a Submerged Sphere Oscillating with Large Amplitude (대진폭 조화 운동을 하는 잠수구에 의한 비선형 조파문제의 시간영역 해석)

  • Kim, Yong-Jig;Ha, Young-Rok
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.6 s.73
    • /
    • pp.67-74
    • /
    • 2006
  • A high-order spectral/boundary-element method is newly adapted as an efficient numerical tool. This method is one of the most efficient numerical methods by which the nonlinear gravity waves can be simulated and hydrodynamic forces also can be calculated in time-domain. In this method, the velocity potential is expressed as the sum of surface potential and body potential. Then, surface potential is solved by using the high-order spectral method and body potential is solved by using the high-order boundary element method. By the combination of these two methods, the wave-making problems by a submerged sphere oscillating with large amplitude under the free~surface are solved in time-domain. Through the example calculations, nonlinear effects on free-surface profiles and hydrodynamic forces are shown and discussed.

A comparison of the neumann-kelvin and rankine source methods for wave resistance calculations

  • Yu, Min;Falzarano, Jeffrey
    • Ocean Systems Engineering
    • /
    • v.7 no.4
    • /
    • pp.371-398
    • /
    • 2017
  • Calm water wave resistance plays a very important role in ship hull design. Numerical methods are meaningful for this reason. In this study, two prevailing methods, the Neumann-Kelvin and the Rankine source method, were implemented and compared. The Neumann-Kelvin method assumes linearized free surface boundary condition and only needs to mesh the hull surface. The Rankine source method considers nonlinear free surface boundary condition and meshes both the ship hull surface and free surface. Both methods were implemented and the wave resistance of a Wigley III and three Series 60(Cb=0.6, 0.7, 0.8) hulls were analyzed. The results were compared with experimental results and the merits of both numerical techniques were quantified. Based on the results, it is concluded that the Rankine source method is more accurate in the calculation of the wave-making resistance. Using the Neumann-Kelvin method, it is found to be easier to model the hull and can be used for slender ships to solve problems like wave current coupling calculation.

A Study on the Possibility of Hull Form Design using Numerical Towing Tank (SHIPFLOW)

  • Lee, Kwi-Joo;Joa, Soon-Won;Sun, Jae-Ouk
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.251-253
    • /
    • 2003
  • This paper discusses some practical problems of the determination of ship wave resistance from flow calculation and the model test. there are so many kind of CFD program as FLUENT, WAVIS, SHIPFLOW, COMET etc. for finding optimized hull. we should know how much percent we trust the program. so if we gather computed values of the wave resistance we'll able to get more accurated values of presumptive.

  • PDF

Hull form Design and Application of CFD Techniques (선형설계와 수치계산기법 응용)

  • Kang K. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.9-14
    • /
    • 2000
  • Computational methods can be classified roughly into two parts: one is the methods based on a potential flow theory, and the other is numerical solvers(CFD) based on Navier-Stockes equation. Methods based on a potential theory are more effective than CFD when the free surface effect is considered. Especially Rankine source method seems to become widespread for simulations of wave making problems. For computations of viscous flow problems, CFD techniques have rapidly been developed and have shown many successful results in the viscous flow calculation. Present paper introduces a computational system 'WAVIS' which includes a pre-processor, potential ant viscous flow solvers and a post-processor. To validate the system, the calculated results for modem commercial hull forms are compared with measurements. It is found that the results from the system are in good agreement with the experimental data, illustrating the accuracy of the numerical methods employed for WAVIS.

  • PDF

Numerical Simulation of Wave Forces acting on Fixed Offshore Structures Using Hybrid Scheme (하이브리드 기법을 이용한 고정된 해양구조물에 작용하는 파랑하중에 관한 수치 시뮬레이션)

  • Nam, Bo-Woo;Hong, Sa-Young;Kim, Yong-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.16-22
    • /
    • 2010
  • In this paper, the diffraction problems for fixed offshore structures are solved using a hybrid scheme. In this hybrid scheme, potential-based solutions and the Navier-Stokes-based finite volume method (FVM) with a volume-of-fluid (VOF) method are combined. We introduce a buffer zone for efficient wave-making and damping. In this buffer zone, the near field solution from FVM-VOF is gradually changed to Stokes' 2nd order wave solutions. Three different models, including the truncated cylinder, sphere, and wigleyIII model, are numerically investigated in regular waves with a wave steepness of 1/30. The efficiency and accuracy of the hybrid scheme are numerically validated from results using different domain sizes and buffer zones. The wave exciting forces from the FVM-VOF simulations are compared with experiments and potential-based solutions from the higher-order boundary element method (HOBEM). This comparison shows good agreement between the hybrid scheme and potential-based solutions.

A Far Field Solution of the Slowly Varying Drift Force on an Offshore Structure in Bichromatic Waves - Two Dimensional Problems

  • Lee, Sang-Moon
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.7-12
    • /
    • 2008
  • A far field solution of the slowly varying force on an offshore structure by gravity ocean waves was shown as a function of the reflection and transmission of the body disturbed waves. The solution was obtained from the conservation of the momentum flux, which simply describes various wave forces, while making it unnecessary to compute complicated integration over a control surface. The solution was based on the assumption that the frequency difference of the bichromatic incident waves is small and its second order term is negligible. The final solution is expressed in term of the reflection and transmission waves, i.e. their amplitudes and phase angles. Consequently, it shows that not only the amplitudes but also the phase differences make critical contributions to the slowly varying force. In a limiting case, the slowly varying force solution gives the one of the mean drift force, which is only dependent on the reflection wave amplitude. An approximation is also suggested in a case where only the mean drift force information is available.

Numerical Analysis of Electromagnetic Radiation Characteristic of PCB and Frame Structure in EMI/EMC (EMI/EMC 환경에서 PCB와 Frame구조물의 전자기 방사특성 해석)

  • Choi, Yoon-Seok;Kim, Young-Sun;HwangBo, Hoon;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.715-716
    • /
    • 2006
  • Nowadays, research of EMI/EMC is very important in electromagnetic wave surroundings generated from many electric and electronic devices. Especially, analysis of electromagnetic radiation characteristic and field have to be performed first of all. At the present most of EMI/EMC problems are solved by the method of practice and inspiration. Hence in this paper, will provide the first step for solving EMI/EMC problems in design process. Model of analysis is structure composed of PCB and Frame. By the first step, theory of dipole antenna is adapted to analyze electromagnetic radiation characteristic and field. Because it is fundamental of analysis of electromagnetic radiation. And it will be expanded for structure of PCB and Frame. Finally, it provide the basic method of analysis of electromagnetic radiation characteristic and field by making similar dipole antenna to PCB and Frame structure.

  • PDF

A Study on Thermal Satisfaction of Domestic Heat Wave Reduction Facilities (국내 폭염 저감 시설의 온열 만족도에 대한 연구)

  • Jun, Yong-Joon;Park, Lyool;Park, Kyung-Soon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • As abnormal climates occur due to the increase in greenhouse gases at home and abroad, various problems such as human casualties, crop damage, energy depletion, and economic loss due to heat diseases, which are one of the extreme climate phenomena, are following one after another. In response, the government has established the 'Climate Crisis Response Special Committee' since 2018, when it recorded the greatest damage in history due to heat waves, and has been carrying out budget formation and reform of laws and systems every year to respond to heat waves. However, in relation to the heat wave damage reduction facility that is being expanded with a large budget, there is no prior research related to the degree of heat loss due to the use of the facility, the difference in effects between specific groups, and the economic effect that comes back compared to the invested budget. Therefore, from a midto long-term perspective, it is expected that it will be difficult to establish a clear direction for policy making. Therefore, in this study, representative facilities were selected according to the principle of heat reduction among the currently expanded heat damage reduction facilities, and a questionnaire survey was conducted for users of each reduction facility (waterfall, awning, pond, and elastic pavement). Accordingly, the change in the sense of heat according to the use of the heat damage reduction facility was checked, and the change in the sense of heat according to the group characteristics (gender, age, metabolic rate) was analyzed to examine the characteristics of the relationship between the facility and the users.