• Title/Summary/Keyword: Wave-front Aberration

Search Result 9, Processing Time 0.035 seconds

Ultra-precision High Numerical Aperture Plastic Objective Lens for Blu-ray Disc Pick-up (블루레이 디스크 픽업용 초정밀 고개구율 플라스틱 대물렌즈)

  • Kim, Boo-Tae;Hyun, Dong-Hoon;Yoo, Kyung-Sun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.811-816
    • /
    • 2011
  • We develop a plastic object lens for blu-ray disc playing pick-up module as morethan 0.85 numerical aperture in this research. We design plastic object lens for blu-ray disc playing pick-up module's each factor's in balanced and made our designed lens by injection molding. Furthermore, by correction designing in mold-core, we optimization our lens efficiency as world grade; wave front aberration $0.028{\lambda}$. RMS, light axis differential 0.3967arcmin. We can manufacture localized blu-ray disc's pick-up lens's component and by this fact we obtain international competitiveness. The result of this research will be very helpful to develop a single objective lens for 3 different wavelength of laser diodes in playing and recording pick-up module.

Design of Optical Path for Small Form Factor Optical Disk Drive and Fabrication of Micro-Compensatory Lens (초소형 광 정보 저장 기기를 위한 광 경로 설계 및 마이크로 보정 렌즈 제작)

  • 김홍민;정경성;최우재;박노철;강신일;박영필
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.115-118
    • /
    • 2002
  • The purpose of this paper is to design a pick-up for the small form factor optical disk drive and to fabricate a micro-compensatory lens for the pick-up using the micro-compression molding process. At design stage, the optical elements including the objective lens and the compensatory lens are miniaturized. The height of pick-up and free working distance are designed as 2mm and 0.2% respectively. To analyze the fabricated micro-compensatory lens, the system was analyzed using the surface profile of the fabricated micro-compensatory lens and CODE V which is commercial software. The RMS wave front aberration of the system using fabricated micro-compensatory lens is 0.01677λ which is lower than Marechal's criterion, 0.07λ.

  • PDF

A Quick Hybrid Atmospheric-interference Compensation Method in a WFS-less Free-space Optical Communication System

  • Cui, Suying;Zhao, Xiaohui;He, Xu;Gu, Haijun
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.612-622
    • /
    • 2018
  • In wave-front-sensor-less adaptive optics (WFS-less AO) systems, the Jacopo Antonello (JA) method belongs to the model-based class and requires few iterations to achieve acceptable distortion correction. However, this method needs a lot of measurements, especially when it deals with moderate or severe aberration, which is undesired in free-space optical communication (FSOC). On the contrary, the stochastic parallel gradient descent (SPGD) algorithm only requires three time measurements in each iteration, and is widely applied in WFS-less AO systems, even though plenty of iterations are necessary. For better and faster compensation, we propose a WFS-less hybrid approach, borrowing from the JA method to compensate for low-order wave front and from the SPGD algorithm to compensate for residual low-order wave front and high-order wave front. The correction results for this proposed method are provided by simulations to show its superior performance, through comparison of both the Strehl ratio and the convergence speed of the WFS-less hybrid approach to those of the JA method and SPGD algorithm.

Analysis of Corneal Higher-order Aberrations after Myopic Refractive Surgery

  • Kim, Jeong-mee
    • Current Optics and Photonics
    • /
    • v.3 no.1
    • /
    • pp.72-77
    • /
    • 2019
  • This study was performed to analyze the optical aberrations of the cornea induced by myopic refractive surgery. Corneal total higher-order aberrations, spherical aberration and coma for 4-mm and 6-mm pupils were measured using a wave-front analyzer. The amount of aberrations of the oblate corneal optics by the achieved correction was found to be larger than for the prolate corneal shape with complete eye, in an emmetropia control group. The change in corneal shape acts as an optical factor that degrades the quality of the retinal image; it seems to be one of the important factors related to quality of vision.

Near field scanning optical interferometer using facet reflection of a tapered optical fiber (광섬유 탐침의 반사를 이용한 파면 분석 근접장 주사 광간섭계)

  • 유장훈;임상엽;이현호;박승한
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.3
    • /
    • pp.248-253
    • /
    • 2004
  • We propose a near- field scanning optical interferometer (NSOI) based on the facet reflection of a nano-sized moveable tapered optical fiber. The interferometer can measure the position and the wave-front of a focused spot simultaneously. The interfering fringes are generated by the reflected beams from the sample surface and from the fiber facet. The wave-front analysis at the focusing position is obtained by using a phase shifting technique with a four-step algorithm. It is found that the resolution for controlling the focal position of our proposed NSOI is less than λ/3 and the measured wave-front aberration at the focal position is in good agreement with the ones obtained by a Twyman-Green interferometer.

Development of Free-form PALs for Correcting Wavefront Refraction (파면굴절력 교정을 위한 자유형상 누진가입도렌즈 개발)

  • Baarg, Saang-Bai;Jeong, Mee-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.50-59
    • /
    • 2010
  • In this paper, two kind of free-form progressive addition lenses (PALs) were designed with Zernike polynomial surface and anatomically accurate finite presbyopic schematic eyes which have aspheric cornea, aspheric GRIN crystalline lens, aspheric retina, and Gaussian apodization factor. Geometrical and diffraction MTFs were used for the optimization process in sequence. 5th orders of Zernike polynomials were used for the evaluation of progression zones of the two examples. The target MTF was set as 0.22 at 100 lp/mm which satisfies the standard visual resolution. These examples were fabricated with a CNC diamond turning machine controlled by slow tool servo (STS). After polishing process, the wavefront aberrations were measured with a laser interferometer on the ten test points across the progression zones and then compared with three current commercially available PALs on the optical performance. Astigmatic aberrations of the examples are very lower than the three selected PALs and have more increased stabilized progressive intermediate zones and near zones. It is expected to give better clear and comfortable distance, intermediate and near visions than other conventional PALs and to improve the adaptability of presbyopic patients to PALs.

A Study on a Hartmann Test of Optical Mirror for On-Machine Measurement of Polishing machine (광학면 연마기의 OMM을 위한 Hartmann Test 방법 연구)

  • 김옥현;이응석;오창진;김용관
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.40-45
    • /
    • 2004
  • Recently, aspheric optical lenses and mirrors, which are harder to manufacture and measure than the conventional spherical ones, are widely used, particularly in electronic fabrication process. Generally, interferometric optical method is used for the measurement of spherical optical surface. However, the interferometric method for aspheric surface measurement is difficult because it needs a precise null corrector and strict environmental conditions such as constant temperature, humidity and vibrations. We have been studied on the manufacturing of aspheric optics to improve the surface profile accuracy and productivity using a corrective polishing process. For the corrective polishing, a practical method of On-Machine Measurement (OMM) is required. For this purpose, an optical OMM system has been studied using the Shach-Hartmann test, which is very robust to the practical polishing environment. The wavefront has been reconstructed from the measured data using the primary aberration polynomial function by the least squares fitting. The measured result of the OMM system shows that the maximum deviation is less than 200 nm for the one of commercial Fizeau interferometer Wyko 6000.

OPTICAL DESIGN OF THE FAR ULTRAVIOLET IMAGING SPECTROGRAPH (원자외선 영상/분광 측정기 광학설계)

  • ;;;Jerry Edelstein
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.359-371
    • /
    • 1998
  • We present the design specifications and the performance estimation of the FUVS (Far Ultraviolet Spectrograph) proposed for the observations of aurora, day/night airglow and astronomical objects on small satelltes in the spectral range of $900~1750AA$. The design of FUVS is carried out with the full consideration of optical characteristics of the grating and the aspheric substrate. Two independent methods, ray-tracing and the wave front aberration theory, are employed to estimate the performance of the optical design and it is verified that both procedures yield the resolution of $2~5AA$ in the entire spectral range. MDF (Minimum Detectable Flux) is also estimated using the known characteristics of the reflecting material and MCP, to study the feasibility of detection for faint emission lines from the hot interstellar plasmas. The results give that the observations from 1 day to 1 week, depending on the line intensity, can detect such faint emission lines from diffuse interstellar plasmas.

  • PDF

Analysis of a flat-field soft x-ray spectrometer using a 2400-grooves/mm varied line-spacing concave grating (2400 grooves/mm 비등간격 오목에돌이발을 이용하는 평면결상형 연엑스선 분광기의 특성 해석)

  • 최일우;남창희
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.3
    • /
    • pp.189-196
    • /
    • 2002
  • The components and alignment parameters of a flat-field soft x-ray spectrometer used in the wavelength range below 50 $\AA$ are determined, and the characteristics of the spectrometer are analyzed. It consists of a toroidal mirror, a slit, a varied line-spacing concave grating, and a soft x-ray detector. The space-resolved spectral image of a source is formed on a single plane using the tordidal mirror and the 2400-grooves/mm varied line-spacing concave grating. The former is used to compensate for the astigmatism caused by the grazing incidence of soft x-ray light on the concave grating. The spectral and spatial resolutions of the spectrometer are calculated by applying the wave front aberration theory, and the diffraction efficiency is calculated by applying the scalar diffraction theory.