• 제목/요약/키워드: Wave simulation

검색결과 2,327건 처리시간 0.031초

A Practical Application of Multiple Wave Models to the Small Fishery Harbor Entrance

  • Jung, Jae-Hyun;Lee, Joong-Woo;Jeon, Min-Su;Kang, Seok-Jin
    • 한국항해항만학회지
    • /
    • 제31권7호
    • /
    • pp.579-587
    • /
    • 2007
  • Samchunpo(Sin Hyang) Harbor is located in the bay of Sa Chun, the central south coast of Korean peninsula. The harbor and coastal boundaries have been protecting by natural coastal islands and shoals. Currently, The Sin Hyang harbor needs maintenance and renovation of the sheltered structures against the weather deterioration and typhoon damages. Consequently to support this, the calculation of accurate design wave through the typhoon wave attack is necessary. In this study, calculation of incident wave condition is simulated using steady state spectrum energy wave model(wide area wave model) from 50 years return wave condition. And this simulation results in wide offshore area were used for the input of the extended mild slope wave model at the narrow coastal area. Finally, the calculation of design wave at Sin Hyang harbor entrance was induced by Boussinesq wave model(detail area wave model) simulation. The numerical model system was able to simulate wave transformations from generation scale to shoreline or harbor impact. We hope these results will be helpful to the engineers doing placement, design, orientation, and evaluation of a wide range of potential solutions in this area.

Source & crustal propagation effects on T-wave envelopes

  • 윤숙영;박민규;이원상
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2010년도 학술대회 초록집
    • /
    • pp.27-27
    • /
    • 2010
  • There have been several studies about empirical relation between seismic source parameters(e.g., focal mechanisms, depths, magnitudes, etc.) and T-wave observation. In order to delineate the relation, numerical and theoretical approaches to figure out T-wave excitation mechanism are required. In an attempt to investigate source radiation and wave scattering effects in the oceanic crust on T-wave envelopes, we perform three-dimensional numerical modeling to synthesize T-wave envelopes. We first calculate seismic P- and SV-wave energy on the seafloor using the Direct Simulation Monte Carlo based on the Radiative Transfer Theory, which enables us to take into account both realistic seismic source parameters and wave scattering in heterogeneous media, and then estimate excited T-wave energy by normal mode computation. The numerical simulation has been carried out considering the following different conditions: source types (strike and normal faults), source depths (shallow and deep), and wave propagation through homogeneous and heterogeneous Earth media. From the results of numerical modeling, we confirmed that T-wave envelopes vary according to spatial seismic energy distributions on the seafloor for the various input parameters. Furthermore, the synthesized T-wave envelopes show directional patterns due to anisotropic source radiation, and the slope change of T-wave envelopes caused by focal depth. Seismic wave scattering in the oceanic crust is likely to control the shape of envelopes.

  • PDF

Analysis and Design of a Wave Energy Conversion Buoy

  • Oh, Jin-Seok;Bae, Soo-Young;Jung, Sung-Young
    • 한국항해항만학회지
    • /
    • 제32권9호
    • /
    • pp.705-709
    • /
    • 2008
  • In the sea various methods have been conducted to capture wave energy which include the use of pendulums, pneumatic devices, etc. Floating devices, such as a cavity resonance device take advantages of both the water motion and the wave induced motions of the floating body itself. The wave energy converter is known commercially as the WAGB(Wave Activated Generator Buoy) and is used in some commercially available buoys to power navigation aids such as lights and horns. This wave energy converter consists of a circular flotation body which contains a vertical water column that has free communication with the sea. A theoretical analysis of this power generated by a pneumatic type wave energy converter is performed and the results obtained from the analysis are used for a real wave energy converter buoy. This paper is shown to have an optimum value for which maximum power is obtained at a given resonant wave period Also, the length of the internal water column corresponds to that of the water mass in the water column. If designed properly, wave energy converter can take advantage not only of the cavity resonance, but also qf the heaving motion of the buoy. Finally, simulation is performed with a LabVIEW program and the simulation results are applied to a wave energy simulator for modifying design data for a wave energy converter.

파랑의 수평운동을 이용한 파력발전장치 개발 (Development of Wave Power Generator using Horizontal Motions of the Wave)

  • 황성수;박일흠;이동수;양경욱
    • 드라이브 ㆍ 컨트롤
    • /
    • 제12권2호
    • /
    • pp.7-13
    • /
    • 2015
  • In this study, we suggested the wave power generator using horizontal motions of the wave for use in the coastal sea. The length of the horizontal movement of the wave in the vicinity of the sea surface is larger than the length of the vertical reciprocating movement of the wave, hence the proposed device has a wave power transmission plate. In addition, because the motion of the wave is maximum to the sea surface, by arranging the buoyancy tanks at the top of the wave power transmission plate, it is always capable of vertical movement in accordance with the sea surface. To confirm the usefulness of the proposed wave power generator, we constructed a mathematical model of the wave power generator and carried out simulation using bondgraph. Furthermore, the efficiency was verified by measuring the degree of electrical energy production through a preliminary experiment.

수치 민감도 해석을 통한 파랑중 FPSO운동 시뮬레이션 (Motion Simulation of FPSO in Waves through Numerical Sensitivity Analysis)

  • 김제인;박일룡;서성부;강용덕;홍사영;남보우
    • 한국해양공학회지
    • /
    • 제32권3호
    • /
    • pp.166-176
    • /
    • 2018
  • This paper presents a numerical sensitivity analysis for the simulation of the motion performance of an offshore structure in waves using computational fluid dynamics (CFD). Starting with 2D wave simulations with varying numerical parameters such as grid spacing and CFL value, proper numerical conditions were found for accurate wave propagation that avoids numerical diffusion problems. These results were mapped on 2D error distributions of wave amplitude and wave length against the numbers of grids per wave length and per wave height under a given CFL condition. Finally, the 2D numerical sensitivity result was validated through CFD simulation of the motion of a FPSO in waves showing good accuracy in motion RAOs compared with existing potential flow solutions.

Optimization of SWAN Wave Model to Improve the Accuracy of Winter Storm Wave Prediction in the East Sea

  • Son, Bongkyo;Do, Kideok
    • 한국해양공학회지
    • /
    • 제35권4호
    • /
    • pp.273-286
    • /
    • 2021
  • In recent years, as human casualties and property damage caused by hazardous waves have increased in the East Sea, precise wave prediction skills have become necessary. In this study, the Simulating WAves Nearshore (SWAN) third-generation numerical wave model was calibrated and optimized to enhance the accuracy of winter storm wave prediction in the East Sea. We used Source Term 6 (ST6) and physical observations from a large-scale experiment conducted in Australia and compared its results to Komen's formula, a default in SWAN. As input wind data, we used Korean Meteorological Agency's (KMA's) operational meteorological model called Regional Data Assimilation and Prediction System (RDAPS), the European Centre for Medium Range Weather Forecasts' newest 5th generation re-analysis data (ERA5), and Japanese Meteorological Agency's (JMA's) meso-scale forecasting data. We analyzed the accuracy of each model's results by comparing them to observation data. For quantitative analysis and assessment, the observed wave data for 6 locations from KMA and Korea Hydrographic and Oceanographic Agency (KHOA) were used, and statistical analysis was conducted to assess model accuracy. As a result, ST6 models had a smaller root mean square error and higher correlation coefficient than the default model in significant wave height prediction. However, for peak wave period simulation, the results were incoherent among each model and location. In simulations with different wind data, the simulation using ERA5 for input wind datashowed the most accurate results overall but underestimated the wave height in predicting high wave events compared to the simulation using RDAPS and JMA meso-scale model. In addition, it showed that the spatial resolution of wind plays a more significant role in predicting high wave events. Nevertheless, the numerical model optimized in this study highlighted some limitations in predicting high waves that rise rapidly in time caused by meteorological events. This suggests that further research is necessary to enhance the accuracy of wave prediction in various climate conditions, such as extreme weather.

장전항 최적 설계를 위한 정온도 해석 (Wave Simulation for the Optimum Design of Jangjeon Harbour)

  • 홍기용;양찬규
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제3권2호
    • /
    • pp.49-59
    • /
    • 2000
  • 장전항 시설물의 최적설계를 위한 항내 파랑분포 수치 시뮬레이션을 수행하였다. 장전항 인근 해역의 바람자료에 기초한 극치동계해석에 의해 추정된 심해 설계파를 수치 시뮬레이션의 외해 경계조건으로 적용하였다. 파랑 시뮬레이션을 위해 Boussinesq 천해파 이론을 사용하였으며, 파의 분산성과 비선형성을 포함하였다. 해안 경계에 대해서는 파랑의 부분적인 반사가 가능토록 유공을 두거나, 파랑 에너지를 모두 흡수하는 해면층을 두어 모사하였다. 방파제 설계 파고를 산정하기 위해서 광역모델에 대한 시뮬레이션을 수행하였으며, 설계된 방파제 및 부두 배치에 대한 항내 정온도 해석을 위하려 상세모델에 대한 시뮬레이션을 수행하였다.

  • PDF

천해역으로 확장된 WAM모형에 의한 영일만 파랑모의 (Wave Simulation on Youngil Bay by WAM Extended to Shallow Water)

  • 천제호;안경모;윤종태
    • 한국해안해양공학회지
    • /
    • 제19권6호
    • /
    • pp.511-520
    • /
    • 2007
  • 심해역 파랑모형인 WAM에 쇄파와 삼파 상호작용을 추가하여 모형의 적용영역을 천해역으로 확장하였다. 모형의 검증을 위해 영일만에서의 파랑변형 모의를 수행하였고, 수치모의된 파랑자료는 영일만 입구 1개소와 영일만 내부 2개소의 관측 결과와 양호한 일치를 보여주었다. 수치모의 결과를 보면, 영일만 입구에서 입사되는 파랑은 영일만 내부로 진입하는 과정에서 바닥에 의한 에너지 감쇠와 쇄파 작용 등으로 인해 파고의 점진적 감소가 나타나고, 파향은 주로 NE 계열로 입사되어 연안 근처에서는 굴절 효과로 인해 해안에 대해서 수직한 방향으로 진행하는 경향을 보여주었다.

Basic Analysis for Improvement of Mooring Stability Under Long Wave Impact

  • Ha, Chang-Sik;Moon, Seung-Hyo;Lee, Joong-Woo
    • 한국항해항만학회지
    • /
    • 제41권5호
    • /
    • pp.329-336
    • /
    • 2017
  • This study suggests a general process of analyzing the mooring and cargo handling limit waves, which is an incident to the new energy port under long wave agitation. To reduce damages of ships and harbor structures due to strong wave responses, it is necessary to predict the change of wave field in the mooring berth to make the proper decision by dock master. The berthing area at a new LNG port in the east coast of Korea in this study is frequently affected by oscillations from waves of 8.5~13s periods in the wintertime. The long period waves give difficulties on port operation by lowering the annual berthing ratio. It needs to find the event waves from the real time offshore wave records, which cause over the mooring limits. For that purpose, the wave records from field measurement and offshore wave buoy were analyzed. From numerical simulation, the response characteristics of long period waves in the berthing area were deduced with or without breakwater expansion plan, analyzing the offshore field wave data collected for two years. Some event wave cases caused over the cargo handling and mooring limits as per the standard Korean port design guideline, and those were used for the decision of port operation by dock master, comparing with the real time offshore wave observations.

A Study on FDTD Analysis and Fabrication of the Sheet-type Millimeter EM wave Absorber

  • Kim, Dae-Hun;Soo, Dong-Soo;Kim, Dong-Il
    • 한국항해항만학회지
    • /
    • 제34권4호
    • /
    • pp.299-304
    • /
    • 2010
  • In this paper, the EM wave absorber was developed for the 94-GHz detecting radar system. To analysis an EM wave absorber in millimeter wave band, we fabricated three absorber samples using carbon black and titanium dioxide and permalloy with chlorinated polyethylene. After measuring the complex relative permittivity, the absorption characteristics are simulated by 1D FDTD according to different thicknesses of less than 1.0 mm. Then, the EM wave absorber was fabricated based on the FDTD simulation. As a result, the measured results agreed well with the simulated ones, and the developed EM wave absorber with a thickness of 0.7 mm had the desired absorption characteristics of more than 14 dB in the frequency range of the 94-GHz band.