• Title/Summary/Keyword: Wave plate

Search Result 853, Processing Time 0.03 seconds

Modeling wave propagation in graphene sheets influenced by magnetic field via a refined trigonometric two-variable plate theory

  • Fardshad, R. Ebrahimi;Mohammadi, Y.;Ebrahimi, F.
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.329-338
    • /
    • 2019
  • In this paper, the magnetic field influence on the wave propagation characteristics of graphene nanosheets is examined within the frame work of a two-variable plate theory. The small-scale effect is taken into consideration based on the nonlocal strain gradient theory. For more accurate analysis of graphene sheets, the proposed theory contains two scale parameters related to the nonlocal and strain gradient effects. A derivation of the differential equation is conducted, employing extended principle of Hamilton and solved my means of analytical solution. A refined trigonometric two-variable plate theory is employed in Kinematic relations. The scattering relation of wave propagation in solid bodies which captures the relation of wave number and the resultant frequency is also investigated. According to the numerical results, it is revealed that the proposed modeling can provide accurate wave dispersion results of the graphene nanosheets as compared to some cases in the literature. It is shown that the wave dispersion characteristics of graphene sheets are influenced by magnetic field, elastic foundation and nonlocal parameters. Numerical results are presented to serve as benchmarks for future analyses of graphene nanosheets.

An efficient shear deformation theory for wave propagation of functionally graded material plates

  • Boukhari, Ahmed;Atmane, Hassen Ait;Tounsi, Abdelouahed;Adda Bedia, E.A.;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.5
    • /
    • pp.837-859
    • /
    • 2016
  • An efficient shear deformation theory is developed for wave propagation analysis of an infinite functionally graded plate in the presence of thermal environments. By dividing the transverse displacement into bending and shear parts, the number of unknowns and governing equations of the present theory is reduced, and hence, makes it simple to use. The thermal effects and temperature-dependent material properties are both taken into account. The temperature field is assumed to be a uniform distribution over the plate surface and varied in the thickness direction only. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The governing equations of the wave propagation in the functionally graded plate are derived by employing the Hamilton's principle and the physical neutral surface concept. There is no stretching.bending coupling effect in the neutral surface-based formulation, and consequently, the governing equations and boundary conditions of functionally graded plates based on neutral surface have the simple forms as those of isotropic plates. The analytic dispersion relation of the functionally graded plate is obtained by solving an eigenvalue problem. The effects of the volume fraction distributions and temperature on wave propagation of functionally graded plate are discussed in detail. It can be concluded that the present theory is not only accurate but also simple in predicting the wave propagation characteristics in the functionally graded plate. The results carried out can be used in the ultrasonic inspection techniques and structural health monitoring.

Study on Impulse Wave Radiated from High Speed Railway Tunnel Exit with Baffle Plate (배플 플레이트를 가지는 고속철도 터널 출구로부터 방사하는 미기압파에 관한 연구)

  • Kim, Tae Ho;Kim, Dong Hyeon;Kim, Heuy Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.3
    • /
    • pp.8-15
    • /
    • 2018
  • Recently, as the high speed railway becomes more common, new environmental problems such as noise around tunnels are appearing. When a high speed train enters a tunnel, a compression wave in the tunnel is generated and propagated toward the tunnel exit at a sonic speed. When it reaches the tunnel exit, a part of compression wave radiates as a pulse typed impulse wave to the outside of tunnel. The impulse wave has an explosive noise. When the impulse wave is propagated around a village, it induces a serious noise or other problems to the resident. In order to solve these engineering problems, it is important to investigate the radiation characteristics of the impulse wave radiated from the tunnel exit. In this study, the effect of the length and angle of the baffle plate at the tunnel exit on the impulse wave radiated from the tunnel exit was investigated by numerical analysis. As a results, the baffle plate greatly affected the propagation of impulse wave.

Dynamic and wave propagation investigation of FGM plates with porosities using a four variable plate theory

  • Bennai, Riadh;Fourn, Hocine;Atmane, Hassen Ait;Tounsi, Abdelouahed;Bessaim, Aicha
    • Wind and Structures
    • /
    • v.28 no.1
    • /
    • pp.49-62
    • /
    • 2019
  • In this paper, an analytical analysis for the study of vibratory behavior and wave propagation of functionally graded plates (FGM) is presented based on a high order shear deformation theory. The manufacture of these plates' defects can appear in the form of porosity. This latter can question and modify the global behavior of such plates. A new shape of the distribution of porosity according to the thickness of the plate was used. The field of displacement of this theory is present of indeterminate integral variables. The modulus of elasticity and the mass density of these plates are assumed to vary according to the thickness of the plate. Equations of motion are derived by the principle of minimization of energies. Analytical solutions of free vibration and wave propagation are obtained for FGM plates simply supported by integrating the analytic dispersion relation. Illustrative examples are given also to show the effects of variation of various parameters such as(porosity parameter, material graduation, thickness-length ratio, porosity distribution) on vibration and wave propagation of FGM plates.

On an Analysis of Reflection and Transmission Coefficients by a Vertical Slit Plate (직립 슬릿판에 의한 반사율과 투과율 해석)

  • 조일형;김남형
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.3
    • /
    • pp.1-7
    • /
    • 2002
  • In this paper, a numerical model to analyze the performance of a vertical slit-type wave absorber is developed under the assumption of inviscid water waves. The formulation combines the linear potential theory with a semi-empirical description of the eddy-shedding at a slit-type wave absorber. We investigated the reflection coefficients over a wide frequency range for a vertical slit-type wave absorber both with and without a solid rear wall. Model test was conducted at KRISO' s two dimensional wave tank to validate the theoretical results. It is found that the agreement between theoretical results and experimental data is surprisingly good. We found that the wave absorbing system using a vertical slit plate has sufficient potentials for breakwaters for ocean development.

A Study on the Characteristics of Elastic Wave Propagation in Plates Using Double Pulsed Laser Holographic Interferometry (이중펄스레이저 홀로그래픽 간섭법을 이용한 평판의 탄성파 전파특성에 관한 연구)

  • Lee, Ki-Baik;Na, Jong-Moon;Kim, Jeong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3211-3223
    • /
    • 1996
  • In this paper, the propagation of elastic wave generated by loading impact to plates made of isotropic of anisotropic material was studied. And the influence of boundary conditions (free or clamped edge) upon the reflection of elastic wave was anlyzed. Also, double exposure holographic interferometer using ruby pulse laser was formed in order to investigate transient waves. Before the elasitc wave was reflected from the edges, the elastic wave of isotropic plate such as aluminum plate showed circular interferometric fringe pattern, whereas that of anisotropic plate such as epoxy composite laminates showed elliptical one. And the transverse displacement curves obtained from experiment and theory for both plates agreed well. Also, the waves reflected from the boundary edges showed much differences according to the boundary condition of edges.

Energy flow analysis of out-of-plane vibration in coplanar coupled finite Mindlin plates

  • Park, Young-Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.174-194
    • /
    • 2015
  • In this paper, an Energy Flow Analysis (EFA) for coplanar coupled Mindlin plates was performed to estimate their dynamic responses at high frequencies. Mindlin plate theory can consider the effects of shear distortion and rotatory inertia, which are very important at high frequencies. For EFA for coplanar coupled Mindlin plates, the wave transmission and reflection relationship for progressing out-of-plane waves (out-of-plane shear wave, bending dominant flexural wave, and shear dominant flexural wave) in coplanar coupled Mindlin plates was newly derived. To verify the validity of the EFA results, numerical analyses were performed for various cases where coplanar coupled Mindlin plates are excited by a harmonic point force, and the energy flow solutions for coplanar coupled Mindlin plates were compared with the classical solutions in the various conditions.

Wave propagation in a FG circular plate via the physical neutral surface concept

  • She, Gui-Lin;Ding, Hao-Xuan;Zhang, Yi-Wen
    • Structural Engineering and Mechanics
    • /
    • v.82 no.2
    • /
    • pp.225-232
    • /
    • 2022
  • In this paper, the physical neutral surface concept is applied to study the wave propagation of functionally graded (FG) circular plate, the wave equation is derived by Hamiltonian variational principle and the first-order shear deformation plate model. Then, we convert the equations to dimensionless equations. The exact solution of wave propagation problem is obtained by Laplace integral transformation, the first order Hankel integral transformation and the zero order Hankel integral transformation. The results obtained by the current model are very close to those obtained in the existing literature, which indicates the correctness and reliability of this study. Moreover, the effects of the functionally graded index parameters and pore volume fraction on the wave propagation are also discussed in detail.

Optical and structural properties of polarization handedness inverters with combination structure deposited by glancing angle deposition (경사입사 증착방법의 복합구조를 이용한 편광방향 변환기의 광학적, 물리적 특성)

  • Park, Yong-Jun;Sobahan, K.M.A.;HwangBo, Chang-Gwon
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2008.07a
    • /
    • pp.217-218
    • /
    • 2008
  • In this paper, we investigate the optical and structural properties of linear and circular polarization-discriminatory inverters. Circular polarization-discriminatory handedness inverter is realized as a combination of half-wave plate and Bragg reflector and that of linear polarization in verter is realized as a combination of quarter-wave plate, Bragg reflector and quarter-wave plate.

  • PDF

Energy Flow Finite Element Analysis(EFFEA) of Coplanar Coupled Mindlin Plates (동일 평면상에서 연성된 Mindlin 판 구조물의 에너지흐름유한요소해석)

  • Park, Young-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.4
    • /
    • pp.307-314
    • /
    • 2016
  • Energy flow analysis(EFA) is a representative method that can predict the statistical energetics of structures at high frequencies. Generally, as the frequency increases, the shear distortion and rotatory inertia effects in the out-of-plane motion of beams or plates become important. Therefore, to predict the out-of-plane energetics of coupled structures in the high frequency range, the energy flow analyses of Timoshenko beam and Mindlin plate are required. Unlike the energy flow model of Kirchhoff plate, the energy flow model of Mindlin plate is composed of three kinds of energy governing equations(out-of-plane shear wave, bending dominant flexural wave, and shear dominant flexural wave). This paper performed the energy flow finite element analysis(EFFEA) of coplanar coupled Mindlin plates. For EFFEA of coplanar coupled Mindlin plates, the energy flow finite element formulation of out-of-plane energetics in the Mindlin plate was performed. The general EFFEA program was implemented by MATLAB® language. For the verification of EFFEA of Mindlin plate, the various numerical applications were done successfully.