• Title/Summary/Keyword: Wave models

Search Result 911, Processing Time 0.024 seconds

TORSIONAL MHD OSCILLATIONS OF THE SUN

  • HIREMATH K. M.;GOKHALE M. H.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.313-314
    • /
    • 1996
  • Assuming that the solar activity and the solar cycle phenomena may be manifestations of global torsional MHD oscillations, we compute the Alfven wave travel times along the field lines in the five models of magnetic field described in the following text. For all these models, we compute standard deviation and it's ratio to mean Alfvenic wave travel times. The last two models yield the smallest relative bandwidth for the frequencies of the MHD oscillations. However, the last model is the only admissible one which can sustain global Alfvenic oscillations with well defined frequency for the fundamental mode

  • PDF

Comparison of Turbulence Models in Shock-Wave/ Boundary- Layer Interaction

  • Kim, Sang-Dug;Kwon, Chang-Oh;Song, Dong-Joo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.153-166
    • /
    • 2004
  • This paper presents a comparative study of a fully coupled, upwind, compressible Navier-Stokes code with three two-equation models and the Baldwin-Lomax algebraic model in predicting transonic/supersonic flow. The k-$\varepsilon$ turbulence model of Abe performed well in predicting the pressure distributions and the velocity profiles near the flow separation over the axisymmetric bump, even though there were some discrepancies with the experimental data in the shear-stress distributions. Additionally, it is noted that this model has y$\^$*/ in damping functions instead of y$\^$+/. The turbulence model of Abe and Wilcox showed better agreements in skin friction coefficient distribution with the experimental data than the other models did for a supersonic compression ramp problem. Wilcox's model seems to be more reliable than the other models in terms of numerical stability. The two-equation models revealed that the redevelopment of the boundary layer was somewhat slow downstream of the reattachment portion.

Analysis of Stem Wave due to Long Breakwaters at the Entrance Channel

  • Kwon, Seong-Min;Moon, Seung-Hyo;Lee, Sang-Heon;Yoo, Jae-Woong;Lee, Joong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.41 no.5
    • /
    • pp.345-352
    • /
    • 2017
  • Recently, a new port reserves deep water depth for safe navigation and mooring, following the trend of larger ship building. Larger port facilities include long and huge breakwaters, and mainly adopt vertical type considering low construction cost. A vertical breakwater creates stem waves combining inclined incident waves and reflected waves, and this causes maneuvering difficulty to the passing vessels, and erosion of shoreline with additional damages to berthing facilities. Thus, in this study, the researchers have investigated the response of stem waves at the vertical breakwater near the entrance channel and applied numerical models, which are commonly used for the analysis of wave response at the harbor design. The basic equation composing models here adopted both the linear parabolic approximation adding the nonlinear dispersion relationship and nonlinear parabolic approximation adding a linear dispersion relationship. To analyze the applicability of both models, the research compared the numerical results with the existing hydraulic model results. The gap of serial breakwaters and aligned angles caused more complicated stem wave generation and secondary stem wave was found through the breakwater gap. Those analyzed results should be applied to ship handling simulation studies at the approaching channels, along with the mooring test.

Prediction of Longshore Current with Set-up/down Effect on a Plane Beach (일정경사 수심단면에서 평균수위의 상승/저하 효과를 고려한 해빈류의 예측)

  • Lee, Cheol-Eung;Kim, Young-Jung;Choi, Han-Kyu
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.277-289
    • /
    • 1997
  • The numerical model for prediction of longshore current with set-up/down effect on a plane beach is developed using the longshore component of the depth-integrated momentum balance equation. To predict the longshore current, the wave height model should first be formulated because the longshore current depends on the wave height directly. Two wave model, regular wave model and random wave model, are developed based on the energy flux balance equation. Also, the numerical model estimating the set-up inside the shoreline is developed using both the on-offshore momentum equation and the moving boundary technique. The numerical models are verified by the analytical solution, and compared with laboratory data. It is found from the comparison that developed models may be predicted accurately the longshore current with set-up/down effect on a plane beach.

  • PDF

Modelling of Wind Wave Pressure and Free-surface Elevation using System Identification (시스템 식별기법을 활용한 파압과 해수면 모델링)

  • Cieslikiewicz, Witold;Badur, Jordan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.6
    • /
    • pp.422-432
    • /
    • 2013
  • A System Identification method to develop parametric models linking free surface elevation and wave pressure is presented and two models are built allowing for either wave pressure or free surface elevation simulation. Linear, time invariant model structures with static nonlinearities are assumed and solutions are sought in a form of autoregressive model with extra input (ARX). An arbitrary chosen free-surface elevation and wave pressure dataset is used for estimation of the models, which are subsequently verified against datasets with similar pressure gauge depth but different free-surface elevation spectra due to different meteorological conditions. It is shown that free-surface simulation using System Identification methods can perform better than traditional linear transfer function derived from linear wave theory (LTF), while wave pressure simulation quality using presented methods is generally similar to that obtained with corrected LTF.

Sensitivity Analysis of Wind-Wave Growth Parameter during Typhoon Season in Summer for Developing an Integrated Global/Regional/Coastal Wave Prediction System (전지구·지역·국지연안 통합 파랑예측시스템 개발을 위한 여름철 태풍시기 풍파성장 파라미터 민감도 분석)

  • Oh, Youjung;Oh, Sang Meong;Chang, Pil-Hun;Kang, KiRyong;Moon, Il-Ju
    • Ocean and Polar Research
    • /
    • v.43 no.3
    • /
    • pp.179-192
    • /
    • 2021
  • In this study, an integrated wave model from global to coastal scales was developed to improve the operational wave prediction performance of the Korean Meteorological Administration (KMA). In this system, the wave model was upgraded to the WaveWatch III version 6.07 with the improved parameterization of the source term. Considering the increased resolution of the wind input field and the introduction of the high-performance KMA 5th Supercomputer, the spatial resolution of global and regional wave models has been doubled compared to the operational model. The physical processes and coefficients of the wave model were optimized for the current KMA global atmospheric forecasting system, the Korean Integrated Model (KIM), which is being operated since April 2020. Based on the sensitivity experiment results, the wind-wave growth parameter (βmax) for the global wave model was determined to be 1.33 with the lowest root mean square errors (RMSE). The value of βmax showed the lowest error when applied to regional/coastal wave models for the period of the typhoon season when strong winds occur. Applying the new system to the case of August 2020, the RMSE for the 48-hour significant wave height prediction was reduced by 13.4 to 17.7% compared to the existing KMA operating model. The new integrated wave prediction system plans to replace the KMA operating model after long-term verification.

Characterisitics of Wave-Induced Current in the vicinity of Wolpo Harbor (월포항 인근해역에서의 해빈류 특성)

  • Lee, Seong-Dae
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.6
    • /
    • pp.661-669
    • /
    • 2000
  • The accurate prediction of wave-induced currents is indispensible to analyze the beach deformation due to the sediment transport or dispersion in the surf zone, which often gives rises to serious environmental problems in the coastal region. Although many numerical models have been suggested up to now, it is not easy to properly simulate wave-induced currents, in particular, over a complex topography. In order to solve these problems, we have to understand the mechanism of wave transformation and wave-induced currents, to compare results numerical models with those of field measurements, and to find the validity and the applicability of them. And, also the validity of the model has been confirmed by the field investigation.

  • PDF

Reflection and Dissipation Characteristics of Non-overtopping Quarter Circle Breakwater with Low-mound Rubble Base

  • Balakrishna, K;Hegde, Arkal Vittal;Binumol, S
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.1
    • /
    • pp.44-54
    • /
    • 2015
  • Breakwaters are the coastal structures constructed either perpendicular (shore connected) or parallel (detached) to the coast. The main function of breakwater is to create a tranquil medium on its leeside by reflecting the waves and also dissipating the wave energy arriving from seaside, resulting in ease of manoeuvrability to boats or ships to their berthing places. Different types of breakwaters are being used at present, such as rubble mound breakwater, vertical wall type breakwater and composite breakwater. The objective of this paper is to investigate reflection coefficients (Kr) and dissipation (loss) coefficients (Kl) for physical models of Quarter circle caisson breakwater of three different radii of 0.550 m, 0.575 m and 0.600 m with S/D ratio of 2.5 (S=spacing between perforations, D=diameter of perforations). The models were tested in the monochromatic wave flume of the department, for different incident wave heights (Hi), Wave periods (T) and water depths (d). It was observed that reflection coefficient increased with increase in the wave steepness (Hi/gT2) and decreased with increase in depth parameter (d/gT2) and hs/d (Height of structure including rubble base/depth of water). The loss coefficient decreased with increase in the wave steepness and increased with increase in depth parameter and hs/d.

Wave Models and Experimental Studies of Beam-plate-beam Coupled Systems for a Mid-frequency Analysis (중주파수 대역 해석을 위한 Beam-plate-beam 연성 구조물의 웨이브 모형 연구와 시험적 규명)

  • Yoo, Ji-Woo;Thompson, D.J.;Ferguson, N.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.2 s.119
    • /
    • pp.121-129
    • /
    • 2007
  • There has been much effort to find suitable methods for structural analysis in the mid-frequency region where traditional low frequency methods have increasing uncertainties whilst statistical energy analysis is not strictly applicable. Systems consisting of relatively stiff beams coupled to flexible plates have a particularly broad mid-frequency region where the beams support only a few modes whilst the plate has a high modal density and modal overlap. A system of two parallel beams coupled to a plate is investigated based on the wave method, which is an approximate method. Muller's method is utilised for obtaining complex roots of a dispersion wave equation, which does not converge in the conventional wave method based on a simple iteration. The wave model is extended from a single-beam-plate system, to a plate with two identical beams which is modelled using a symmetric-antisymmetric technique. The important hypothesis that the coupled beam wavenumber is sufficiently smaller than the plate free wavenumber is experimentally verified. Finally, experimental results such as powers and energy ratios show the validity of the analytical wave models.

Storm Surge Analysis using Archimedean Copulas (Copulas에 기반한 우리나라 동해안 폭풍해일 분석)

  • Hwang, Jeongwoo;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.421-421
    • /
    • 2017
  • In order to secure the safety of coastal areas from the continuous storm surge in Korea, it is important to predict the wave movement and properties accurately during the storm event. To improve the accuracy of the storm simulation, and to quantify coastal risks from the storm event, the dependencies between wave height, wave period, and storm duration should be analyzed. In this study, therefore, copulas were used to develop multivariate statistical models of sea storms. A case study of the east coast of Korea was conducted, and the dependencies between wave height, wave period, water level, storm duration and storm interarrival time were investigated using Kendall's tau correlation coefficient. As a result of the study, only wave height, wave period, and storm duration appeared to be correlated.

  • PDF