• Title/Summary/Keyword: Wave impact

Search Result 805, Processing Time 0.031 seconds

Analysis of Domestic Heatwave Research Trends (국내 폭염 연구 동향 분석)

  • Baek, Jun-Beom;Kwon, Yongseok
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.755-768
    • /
    • 2021
  • Purpose: Due to the nature of heatwave research, where research is conducted for a variety of subjects and purposes, it is important to anticipate research trends and development directions in order to improve the quality of the research. Therefore, in order to provide basic data that can suggest the current status of heatwave research and the direction of future research, we tried to examine the trends of heatwave-related research. Method: Heatwave studies published in academic journals registered with the National Research Foundation of Korea from 2011 to 2020 were analyzed by classifying them according to the research period, the purpose of the study, the research subjects and the research method. Result: The main research results are as follows. First, as interest in heatwaves increases, the number of heatwave studies also increases. Second, the purpose of heatwave research is biased and needs to be studied from various perspectives. Third, although various research subjects were used, an even study was not conducted. Fourth, under the influence of the research purpose, the bias of the research method appeared together. Conclusion: The damage caused by the heat wave is persistent and has a widespread impact. In order to manage, prevent, and respond to such heat waves as disasters, equal research should be conducted in various fields.

Effect of Functional Exercise Using Linear Ladder on EEG Activities in College Men (줄사다리를 이용한 기능적 운동이 남자대학생의 뇌파 활성에 미치는 영향)

  • Jung, Suk Yool;Lee, Hae Lim;Lee, Sung Ki
    • Journal of Naturopathy
    • /
    • v.11 no.2
    • /
    • pp.79-84
    • /
    • 2022
  • Background: Exercise influences the generation of brain cells through learning and experience in the process of acquiring motor skills and helps improve brain function. It is necessary to scientifically verify how brain wave activity, a method of analyzing brain function, affects movement. Purposes: We scientifically identify the positive effects on EEG activity when applying complex functional linear ladder movements in an appropriate environment. Methods: After recruiting 30 male university students, we divided them into a linear ladder exercise group, a treadmill exercise group, and a control group, and exercise was applied and measured repeatedly for ten weeks. Results: There was a statistically significant change between groups in the left prefrontal lobe of alpha waves when exercise was applied (p < .05). Conclusions: Although exercise has a positive effect on EEG, line ladder exercise, which applies a complex pattern and produces more leg movement, appears to have a better impact on brain function than traditional aerobic exercise.

SARS-CoV-2 IgG Antibody Seroprevalence in Children from the Amritsar District of Punjab

  • Kaur, Amandeep;Singh, Narinder;Singh, Kanwardeep;Sidhu, Shailpreet Kaur;Kaur, Harleen;Jain, Poonam;Kaur, Manmeet;Jairath, Mohan
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.54 no.3
    • /
    • pp.173-178
    • /
    • 2022
  • The majority of the children experience milder coronavirus disease 2019 (COVID-19) symptoms. Children represent a significant source of community transmission. Children under 18 years of age account for an estimated 4.8% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections globally. However, no conclusive statements pertaining to the multi-fold aspects of the virus in children could be drawn due to the lower prevalence of pediatric cases. The present study was conducted to identify the indirect impact of SARS-CoV-2 infections on developing herd immunity among children in the age group 3 to 18 years by investigating their antibody levels. In the study, 240 children aged 3~18 years were recruited by the Department of Pediatrics, Government Medical College and Hospital, Amritsar, India, and quantification of the antibodies was performed at the Viral Research and Diagnostic Laboratory (VRDL), Government Medical College (GMC), Amritsar, India. Out of the 240 serum samples, 197 (82.08%) showed seropositivity, while 43 (17.92%) were seronegative. When stratified, it was observed that in the age group 3~6 years, 22.33% of children were found to have anti-SARS-CoV-2 antibodies while in the age groups 7~10 years, 11~14 years, and 15~18 years, respectively, 37.06%, 30.46%, and 10.15% were seropositive. Although there was seroconversion among children which was useful for predicting the next wave, no differences in seropositivity were observed between adults and children.

The effect of typhoon translation speed and landfall angle on the maximum surge height along the coastline

  • Qian, Xiaojuan;Son, Sangyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.153-153
    • /
    • 2021
  • Storm Storm event is one of major issues in South Korea due to devastating damage at its landfall. A series of statistical study on the historical typhoon records consistently insist that the typhoon translation speed (TS) is on slowdown trend annually, and thus provides an urgent topic in assessing the extreme storm surge under future climate change. Even though TS has been regarded as a principal contributor in storm surge dynamics, only a few studies have considered its impact on the storm surge. The landfall angle (LA), another key physical factor of storm surge also needs to be further investigated along with TS. This study aims to elucidate the interaction mechanism among TS, LA, coastal geometry, and storm surge synthetically by performing a series of simulations on the idealized geometries using Delft3D FM. In the simulation, various typhoons are set up according to different combinations of TS and LA, while their trajectories are assumed to be straight with the constant wind speed and the central pressure. Then, typhoons are subjected to make landfall over a set of idealized geometries that have different depth profiles and layouts (i.e., open coasts or bays). The simulation results show that: (i) For the open coasts, the maximum surge height (MSH) increases with increasing TS. (ii) For the constant bed level, a typhoon normal to the coastline resulted in peak MSH due to the lowest effect of the coastal wave. (iii) For the continental shelf with different widths, the slow-moving typhoon will generate the peak MSH around a small LA as the shelf width becomes narrow. (iv) For the bay, MSH enlarges with the ratio of L/E (the length of main-bay axis /gate size) dropping, while the greatest MSH is at L/E=1. These findings suggest that a fast-moving typhoon perpendicular to the coastline over a broad continental shelf will likely generate the extreme storm surge hazard in the future, as well as the slow-moving typhoon will make an acute landfall over a narrow continental shelf.

  • PDF

Impact of root canal curvature and instrument type on the amount of extruded debris during retreatment

  • Burcu Serefoglu;Gozde Kandemir Demirci;Seniha Micoogullari Kurt;Ilknur Kasikci Bilgi;Mehmet Kemal Caliskan
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.1
    • /
    • pp.5.1-5.13
    • /
    • 2021
  • Objectives: The aim of the current study was to assess whether the amount of extruded debris differs for straight and severely curved root canals during retreatment using H-files, R-Endo, Reciproc and ProTaper Universal Retreatment (PTU-R) files. Additionally, the area of residual filling material was evaluated. Materials and Methods: Severely curved (n = 104) and straight (n = 104) root canals of maxillary molar teeth were prepared with WaveOne Primary file and obturated with gutta-percha and AH Plus sealer. Root canal filling materials were removed with one of the preparation techniques: group 1: H-file; group 2: R-Endo; group 3: Reciproc; group 4: PTU-R (n = 26). The amount of extruded material and the area of the residual filling material was measured. The data were analyzed with 2-way analysis of variance (ANOVA) and 1-way ANOVA at the 0.05 significance level. Results: Except for Reciproc group (p > 0.05), PTU-R, R-Endo, and H-file systems extruded significantly more debris in severely curved canals (p < 0.05). Each file system caused more residual filling material in severely curved canals than in straight ones (p < 0.05). Conclusions: All instruments used in this study caused apical debris extrusion. Root canal curvature had an effect on extruded debris, except for Reciproc system. Clinicians should be aware that the difficult morphology of the severely curved root canals is a factor increasing the amount of extruded debris during the retreatment procedure.

The Influence of Ethical Leadership on Safety Behavior : the Mediating Effect of Psychological Safety and Moderating Effect of Moral Identity (윤리적 리더십이 안전 행동에 미치는 영향 : 심리적 안전감의 매개 효과 및 도덕 정체성의 조절 효과)

  • Kim, Byung-Jik
    • Journal of Digital Convergence
    • /
    • v.20 no.5
    • /
    • pp.433-441
    • /
    • 2022
  • This study not only examines the intermediating process of the association between ethical leadership and safety behavior, but also tries to find a factor which moderates the positive influence of ethical leadership. To achieve it, this paper tried to identify the mediating effect of employee's psychological safety between ethical leadership and safety behavior, as well as the moderating influence of moral identity in the ethical leadership-psychological safety link. By utilizing 3-wave survey data from 227 employees in Korean companies with conducting structural equation modeling(SEM), this paper found that ethical leadership had a positive influence on safety behavior through mediating effect of psychological safety. In addition, employee's moral identity positively moderated the positive impact of ethical leadership on psychological safety.

Measurement of Individuals' Emotional Stress Responses to Construction Noise through Analysis of Human Brain Waves

  • Hwang, Sungjoo;Jebelli, Houtan;Lee, Sungchan;Chung, Sehwan;Lee, SangHyun
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.237-242
    • /
    • 2020
  • Construction noise is among the most critical stressors that adversely affect the quality of life of the people residing near construction sites. Many countries strictly regulate construction noise based on sound pressure levels, as well as timeslots and type of construction equipment. However, individuals react differently to noise, and their tolerance to noise levels varies, which should be considered when regulating construction noise. Although studies have attempted to analyze individuals' stress responses to construction noise, the lack of quantitative methods to measure stress has limited our understanding of individuals' stress responses to noise. Therefore, the authors proposed a quantitative stress measurement framework with a wearable electroencephalogram (EEG) sensor to decipher human brain wave patterns caused by diverse construction stressors (e.g., worksite hazards). This present study extends this framework to investigate the feasibility of using the wearable EEG sensor to measure individuals' emotional stress responses to construction noise in a laboratory setting. EEG data were collected from three subjects exposed to different construction noises (e.g., tonal vs. impulsive noises, different sound pressure levels) recorded at real construction sites. Simultaneously, the subjects' perceived stress levels against these noises were measured. The results indicate that the wearable EEG sensor can help understand diverse individuals' stress responses to nearby construction noises. This research provides a more quantitative means for measuring the impact of the noise generated at a construction site on neighboring communities, which can help frame more reasonable construction noise regulations that consider various types of residents in urban areas.

  • PDF

A Study on the Effect and Countermeasures for Radio Wave Interference between LTE-Maritime Radio Facilities and Maritime Radio Service Facilities (초고속 해상무선통신망 무선설비와 해상업무용 무선설비간 전파 간섭 영향 및 대책 연구)

  • Jeong-Hun Lee;Hyung-Jin Moon;Bu-Young Kim;Woo-Seong Shim
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2021.11a
    • /
    • pp.119-120
    • /
    • 2021
  • Radio equipment for maritime service and navigation aids installed on fishing vessels are required to comply with the performance standards KN60945_60533 that apply IEC 60945. The LTE-M transceiver was excluded from the target because it did not belong to the radio equipment of the ship station, and it acted as a cause of audible noise in the radio equipment for maritime service installed in the fishing vessel due to interference by radiated emission or conducted emission. In this paper, we analyze the impact of interference based on related cases and present institutional solutions for the diversification of LTE-M.

  • PDF

An analysis of the waning effect of COVID-19 vaccinations

  • Bogyeom Lee;Hanbyul Song;Catherine Apio;Kyulhee Han;Jiwon Park;Zhe Liu;Hu Xuwen;Taesung Park
    • Genomics & Informatics
    • /
    • v.21 no.4
    • /
    • pp.50.1-50.9
    • /
    • 2023
  • Vaccine development is one of the key efforts to control the spread of coronavirus disease 2019 (COVID-19). However, it has become apparent that the immunity acquired through vaccination is not permanent, known as the waning effect. Therefore, monitoring the proportion of the population with immunity is essential to improve the forecasting of future waves of the pandemic. Despite this, the impact of the waning effect on forecasting accuracies has not been extensively studied. We proposed a method for the estimation of the effective immunity (EI) rate which represents the waning effect by integrating the second and booster doses of COVID-19 vaccines. The EI rate, with different periods to the onset of the waning effect, was incorporated into three statistical models and two machine learning models. Stringency Index, omicron variant BA.5 rate (BA.5 rate), booster shot rate (BSR), and the EI rate were used as covariates and the best covariate combination was selected using prediction error. Among the prediction results, Generalized Additive Model showed the best improvement (decreasing 86% test error) with the EI rate. Furthermore, we confirmed that South Korea's decision to recommend booster shots after 90 days is reasonable since the waning effect onsets 90 days after the last dose of vaccine which improves the prediction of confirmed cases and deaths. Substituting BSR with EI rate in statistical models not only results in better predictions but also makes it possible to forecast a potential wave and help the local community react proactively to a rapid increase in confirmed cases.

The gene expression programming method for estimating compressive strength of rocks

  • Ibrahim Albaijan;Daria K. Voronkova;Laith R. Flaih;Meshel Q. Alkahtani;Arsalan Mahmoodzadeh;Hawkar Hashim Ibrahim;Adil Hussein Mohammed
    • Geomechanics and Engineering
    • /
    • v.36 no.5
    • /
    • pp.465-474
    • /
    • 2024
  • Uniaxial compressive strength (UCS) is a critical geomechanical parameter that plays a significant role in the evaluation of rocks. The practice of indirectly estimating said characteristics is widespread due to the challenges associated with obtaining high-quality core samples. The primary aim of this study is to investigate the feasibility of utilizing the gene expression programming (GEP) technique for the purpose of forecasting the UCS for various rock categories, including Schist, Granite, Claystone, Travertine, Sandstone, Slate, Limestone, Marl, and Dolomite, which were sourced from a wide range of quarry sites. The present study utilized a total of 170 datasets, comprising Schmidt hammer (SH), porosity (n), point load index (Is(50)), and P-wave velocity (Vp), as the effective parameters in the model to determine their impact on the UCS. The UCS parameter was computed through the utilization of the GEP model, resulting in the generation of an equation. Subsequently, the efficacy of the GEP model and the resultant equation were assessed using various statistical evaluation metrics to determine their predictive capabilities. The outcomes indicate the prospective capacity of the GEP model and the resultant equation in forecasting the unconfined compressive strength (UCS). The significance of this study lies in its ability to enable geotechnical engineers to make estimations of the UCS of rocks, without the requirement of conducting expensive and time-consuming experimental tests. In particular, a user-friendly program was developed based on the GEP model to enable rapid and very accurate calculation of rock's UCS, doing away with the necessity for costly and time-consuming laboratory experiments.