• Title/Summary/Keyword: Wave impact

Search Result 809, Processing Time 0.024 seconds

Improvement of Wave Height Mid-term Forecast for Maintenance Activities in Southwest Offshore Wind Farm (서남권 해상풍력단지 유지보수 활동을 위한 중기 파고 예보 개선)

  • Ji-Young Kim;Ho-Yeop Lee;In-Seon Suh;Da-Jeong Park;Keum-Seok Kang
    • Journal of Wind Energy
    • /
    • v.14 no.3
    • /
    • pp.25-33
    • /
    • 2023
  • In order to secure the safety of increasing offshore activities such as offshore wind farm maintenance and fishing, IMPACT, a mid-term marine weather forecasting system, was established by predicting marine weather up to 7 days in advance. Forecast data from the Korea Hydrographic and Oceanographic Agency (KHOA), which provides the most reliable marine meteorological service in Korea, was used, but wind speed and wave height forecast errors increased as the leading forecast period increased, so improvement of the accuracy of the model results was needed. The Model Output Statistics (MOS) method, a post-correction method using statistical machine learning, was applied to improve the prediction accuracy of wave height, which is an important factor in forecasting the risk of marine activities. Compared with the observed data, the wave height prediction results by the model before correction for 6 to 7 days ahead showed an RMSE of 0.692 m and R of 0.591, and there was a tendency to underestimate high waves. After correction with the MOS technique, RMSE was 0.554 m and R was 0.732, confirming that accuracy was significantly improved.

Estimation of Harbor Responses due to Construction of a New Port in Ulsan Bay

  • Lee, Joong-Woo;Lee, Hoon;Lee, Hak-Seung;Jeon, Min-Su
    • Journal of Navigation and Port Research
    • /
    • v.28 no.7
    • /
    • pp.619-627
    • /
    • 2004
  • Introduction of wave model, considered the effect of shoaling, refraction, diffraction, partial reflection, bottom friction, breaking at the coastal waters of complex bathymetry, is a very important factor for most coastal engineering design and disaster prevention problems. As waves move from deeper waters to shallow coastal waters, the fundamental wave parameters will change and the wave energy is redistributed along wave crests due to the depth variation, the presence of islands, coastal protection structures, irregularities of the enclosing shore boundaries, and other geological features. Moreover, waves undergo severe change inside the surf zone where wave breaking occurs and in the regions where reflected waves from coastline and structural boundaries interact with the incident waves. Therefore, the application of mild-slope equation model in this field would help for understanding of wave transformation mechanism where many other models could not deal with up to now. The purpose of this study is to form a extended mild-slope equation wave model and make comparison and analysis on variation of harbor responses in the vicinities of Ulsan Harbor and Ulsan New Port, etc. due to construction of New Port in Ulsan Bay. We also considered the increase of water depth at the entrance channel by dredging work up to 15 meters depth in order to see the dredging effect. Among several model analyses, the nonlinear and breaking wave conditions are showed the most applicable results. This type of trial might be a milestone for port development in macro scale, where the induced impact analysis in the existing port due to the development could be easily neglected.

Assessment of Rockmass Damage around a Tunnel Using P Wave Velocity Tomography (P파 속도 토모그래피를 이용한 터널 주변의 암반손상 평가)

  • Park, Chul-Soo;SaGong, Myung;Mok, Young-Jin;Kim, Dae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.11
    • /
    • pp.53-60
    • /
    • 2009
  • Construction of a tunnel induces rock masses damage around the tunnel. The degree of damage produced on rock masses will affect on the mechanical and hydraulic behaviors of the rock masses. In this paper, P wave velocity measured by cross-hole test was used to assess rock masses damage around the test tunnel. Initiation of source signal was carried out using mechanical impact at the source installed borehole. In consequence, the generated P wave signal was low noise and apparent wave form, which allows accurate pick-up of first arrival time. From the test, the region where rock damage is expected shows relatively low P wave velocity. In addition, with multiple points of P wave velocity measurement along each cross-hole, two dimensional P wave tomography was obtained. The tomography provides apparent view of the rock damage behind the tunnel. The measured P wave velocity was correlated with features of rock masses, porosity and Q value.

Analysis of Modified Impact Echo applying Discrete Wavelet Transform (이산 웨이블릿 변환을 적용한 수정충격반향기법의 해석)

  • 추진호;조성호;황선근
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.309-314
    • /
    • 2003
  • Impact Echo method has been successful in detecting a variety of defects in concrete structure. This study has the objectives to show important aspects of applying the Discrete Wavelet Transform(DWT) to signal processing of Modified Impact Echo(ModIE) Measurement systems and to the understanding of the seismic wave propagation. The data of ModIE were processed by DWT and compared with the results of conventional ModIE Analysis. Although it is inconsistent in the evaluated thickness of concrete lining, the DWT provides the features of separation, synthesis and de-noising in the original signal. The application of technique by wavelet was explained numerically with ABAQUS and performed experimentally with a real scale model in this work. Further works on the possible ways for creating new mother wavelet are specially needed for the enhancement of seismic signal analysis.

  • PDF

A Study on the Vibration Characteristics of Collecting Plate in the Electrostatic Precipitator Using Holograpy (홀로그래피를 이용한 정전집진기 집진판의 진동 특성 연구)

  • 나종문;이기백;양장식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.1
    • /
    • pp.56-66
    • /
    • 1996
  • In this study, the characteristics of generation and propagarion of transient wave induced in the assembly of four collecting plate upon the propagation of waves are analyzed. Also double exposure holographic inteferometry using ruby pulse laser is built in order to investigate the propagation of transient waves generated by impact load. When impact load was applied at edge of connecting band, the vibration of collecting plates was generated from the contact points between collecting plate and band which connects four collecting plates. Waves generated from the lower part and those reflected from the upper part were mixed as time went on and then formed very complex shapes. Also, when impact load was aplied at center of collecting plate, the waves propagating across the convexo-concave plane were reflected partly at curved section. Therefore the vibration amplitude was decreased as the transiet waves were propagated through the convexo-concave plane.

  • PDF

Instrumented Drop Weight Impact Testing of Polymer Materials (계장화에 의한 고분자 재료의 낙하추식 충격시험)

  • 장경영;김갑용;최만용
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.2
    • /
    • pp.3-12
    • /
    • 1998
  • Polymer materials have been used offensively as construction materials for automobiles, ships, and airplanes in recent years, and their impact resistance has been obliged to be examined. In the present study, a dropped load and a specimen, equipped with high responsible strain gauges respectively, were dropped and then the changes of load and absorption energy with time were observed. It was found that the waveforms for dropped weight coincided with output signal wave for specimen during the destruction test. Based on this experimental result, three disc type of specimens with different compositions were prepared and examined. This instrumented impact test method showed that each specimen can be distinguished from each other better than conventional tests and is expected to contribute to assess test results of impact resistance for some materials under development.

  • PDF

Investigation of Wave Resistance Performance for Ships and Offshore Structures based on Arbitrary Lagrangian Eulerian Method (ALE 기법을 기반 선박 및 해양 구조물의 내파 성능 분석)

  • Lee, Chi-Seung;Kim, Joo-Hyun;Kim, Myung-Hyun;Lee, Jae-Myung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.553-556
    • /
    • 2011
  • The primary aim of the present study is to propose new design formulae that can be used to evaluate the structural performance of breakwaters installed on container carriers under green water impact loads. A series of numerical analyses for green water impact loads inducing breakwater collapse have been carried out. The well-known fluid-structure interaction analysis technique has been adopted realistically to consider the phenomenon of green water impact loads. The structural behavior of these breakwaters under green water impact loads has also been carried out simultaneously throughout the transient analysis. A verification study of the numerical results was performed using the actual collapse incidents of breakwaters on container carriers. It would be expected that the proposed design formulae, based on the obtained insights, could be used as practical guidelines for the design of breakwaters on container carriers.

  • PDF

Impact Localization of a Composite Plate Using a Single Transducer and Spatial Focusing Signal Processing Techniques (단일 센서와 공간집속 신호처리 기술을 이용한 복합재 판에서의 충격위치 결정)

  • Cho, Sungjong;Jeong, Hyunjo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.2
    • /
    • pp.152-159
    • /
    • 2013
  • A structural health monitoring(SHM) technique for locating impact position in a composite plate is presented in this paper. The technique employs a single sensor and spatial focusing properties of time reversal(TR) and inverse filtering(IF). We first examine the focusing effect of back-propagated signal at the impact position and its surroundings through simulation. Impact experiments are then carried out and the localization images are found using the TR and IF signal processing, respectively. Both techniques provide accurate impact location results. Compared to existing techniques for locating impact or acoustic emission source, the proposed methods have the benefits of using a single sensor and not requiring knowledge of material properties and geometry of structures. Furthermore, it does not depend on a particular mode of dispersive Lamb waves that is frequently used in the SHM of plate-like structures.

Experimental Investigation of Impact-Echo Method for Concrete Slab Thickness Measurement

  • Popovics John S.;Cetrangolo Gonzalo P.;Jackson Nicole D.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.6
    • /
    • pp.427-439
    • /
    • 2006
  • Accurate estimates of in place thickness of early age (3 to 28 days after casting) concrete pavements are needed, where a thickness accuracy of ${\pm}6mm$ is desired. The impact-echo method is a standardized non-destructive technique that has been applied for this task. However, the ability of impact-echo to achieve this precision goal is affected by Vp (measured) and ${\beta}$ (assumed) values that are applied in the computation. A deeper understanding of the effects of these parameters on the accuracy of impact-echo should allow the technique to be improved to meet the desired accuracy goal. In this paper, the results of experimental tests carried out on a range of concrete slabs are reported. Impact-echo thickness estimation errors caused by material property gradients and sensor type are identified. Correction factors to the standard analysis method are proposed to correct the identified errors and to increase the accuracy of the standard method. Results show that improved accuracy can be obtained in the field by applying these recommendations with the standard impact-echo method.

항공기 복합재 구조물의 저속충격 해석방법 분석

  • Choi, Ik-Hyeon
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.213-222
    • /
    • 2003
  • Some analytical methods to analyze low-velocity impact force history of composite laminated structures used in aerospace vehicles are reviewed. A classical method used at initial research of low-velocity impact problem in 1980s was reviewed on its physical meaning, and the approximate method assuming the shape of impact force history as a sinusoidal wave was reviewed. A parametric study on contact constant and exponent in contact law was performed in order to analyze an effect on impact force history, and finally its was understood that impact force history could be analyzed accurately even though the linearized contact law was used. Also, in this paper it was shown that impact problem could be analyzed simply and easily using a commercial finite element code.

  • PDF