• Title/Summary/Keyword: Wave hindcasting

Search Result 27, Processing Time 0.025 seconds

Reproduction of Extreme Waves Caused by Typhoon MAEMI with Wave Hindcasting Method, WAM (I) - Corrections of directional spreading division and limitation on wave development of WAM model - (제3세대 파랑추산모형을 이용한 태풍매미의 극한파랑 재현 (I) - WAM 모형의 파향격자 분할법 및 파 발달 제한조건의 수정-)

  • Shin, Seung-Ho;Hong, Key-Yong;Choi, Hak-Sun;Noriaki Hashimoto
    • Journal of Navigation and Port Research
    • /
    • v.28 no.6
    • /
    • pp.557-564
    • /
    • 2004
  • The WAM wave model has been widely used for wave hindcasting in the ocean by many domestic and foreign researchers due to its relative simplicity and high accuracy. As this model was originally developed for the condition of deepwater and comparatively coarse grid size covering wide area, it might produce in a fault result caused by the improper distribution of directional spreading. We extensively investigated involved problems based on WAM Cycle 4 model and suggested the improved WAM model so that it is applicable to both shallow water sea and fine mesh wave simulation The modified W AM model is verified here by comparing the computed result with and the observed data at Ieodo Ocean Research Station for September of 2003.

Establishment of Wave Information Network of Korea (WINK) (전국파랑관측자료 제공시스템 WINK 구축)

  • Jeong, Weon-Mu;Oh, Sang-Ho;Ryu, Kyung-Ho;Back, Jong-Dai;Choi, Il-Hoon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.326-336
    • /
    • 2018
  • Continuous measurement of nearshore waves around Korea over long period is very demanding to setup plans for prevention of disasters of port and coastal structures. In this respect, a new web-based system, termed as WINK, was established, which collects nearshore wave data from Korea Meteorological Agency (KMA), Korea Hydrographic and Oceanographic Agency (KHOA), and Ministry of Oceans and Fisheries (MOF) and provide them after quality control of the data. This paper describes technical aspects regarding collection and selection of the wave observation data, construction of wave hindcasting data, the methodology of quality control for the selected wave data, and overall process of building the web-based data providing system.

Examinations on the Wave Hindcasting of the Abnormal Swells in the East Coast (동해안 이상 너울 추산에 관한 고찰)

  • Kim, Tae-Rim;Lee, Kang-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.13-19
    • /
    • 2008
  • Abnormally large swells that appeared on the coast of the East Sea in October in 2005 and 2006 were simulated using SWAN model to examine the accuracy of the model for future forecasting Seawind data calculated based on the weather chart ant bottom topography were used for input data, and the model was operated more than 20 days before the observed swells to avoid the problems from the cold start of the model. The comparisons with observed wind and wave data were unsatisfactory and neededmore improvement in terms of swell component in the wave model as well as the quality of seawind data. The satellite wind and wave data can be good candidates for future comparison of the wave model results in the East Sea.

Determination of Design Waves along the South Coast of Korea (한국남해만에서의 설계파의 결정)

  • 김태인;최한규
    • Water for future
    • /
    • v.21 no.4
    • /
    • pp.389-397
    • /
    • 1988
  • For determination of the design wves at the seven selected sites in the South Sea, a method of hindcasting the past annual largest significant waves from the records of both the wind speed at the nearby weather stations and the weather charts of typhoons are utilized. The design significant waves in deep water are determined through the extremal probability analysis for three major wave directions(SW, S, SE) at each site from the annual extremal series of wave heights. Design significant wave heights with the return period of 100 years ranged between 4.6m and 8.8m with the wave period ranging between 8.2 seconds and 12.9 seconds. Through the analysis of weather maps, both the fetches for the wind directions SW-SE along the South Coast and the relationship between the wind speed at sea and the wind speed at the nearby land weather stations for seasonal winds are determined. The wind speed at sea are found to be 0.8-0.9 times the wind speed at the land stations for $U_1$>15m/s. The ratio of the duration-averaged wind speed to the maximum wind speed varies between 0.7-0.9 as a negative exponential function for the duration ranging 2< t< 13 hours.

  • PDF

Parameter Estimation and Analysis of Deepwater Design Wave in Marginal Seas around Korea (한국 연안 심해 설계파의 매개변수 추정 및 분석)

  • Kim, Jeong-Dae;Jeong, Shin-Taek;Cho, Hong-Yeon;Oh, Nam-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.4
    • /
    • pp.313-319
    • /
    • 2007
  • Long term wave climate of both extreme and operational wave height is essential for planning and designing coastal structures. Since the availability of the field wave data for the waters around Korean peninsula is limited to provide a reliable wave statistics, the wave climate information has been generated by means of long-term wave hindcasting using available meteorological data. In this paper, a set of deep water wave data obtained from KORDI(2003) were analyzed for extreme wave heights. These wave data at 67 stations off the Korean coast from 1979 to 1998 were arranged in the 16 directions. The probability distributions considered in this research were the FT-I and Weibull distribution. For each of these distributions, the method proposed by Goda(2004) was applied to estimate the parameters. For judgment of best fitting, MIR criterion proposed by Goda and Gobune(1990) was used. FT-I distribution which best fits to the 886 data, while Weibull(k=0.75) 81 data, Weibull(k=1.00) 105 data.

Comparison of Wave Power Resources in the Coastal Zone of the Korea East Sea Estimated by Using Field Measurement Wave Data (실측 파랑자료를 이용하여 추정된 우리나라 동해 연안역의 파력 부존량 비교)

  • Jeong, Weon-Mu;Oh, Sang-Ho;Lee, Dal-Soo;Lee, Dong-Young
    • New & Renewable Energy
    • /
    • v.3 no.3
    • /
    • pp.28-35
    • /
    • 2007
  • In this study, the wave power resources at the three locations [Sokcho, Hupo, and Onsan] on the east coast of Korea were estimated by using the field measurement data and were compared with the results of previous researches. It was found that seasonal variation of the wave power is very significant on the east coast of Korean peninsula. The wave power was the smallest in the summer season at all the locations. At Hupo and Onsan, the highest value of the monthly-averaged wave power was observed in September, probably because the pathways of typhoon in September were close to both locations. At the northest location, Sockcho, in contrast, the monthly highest value of the wave power appeared in January, probably owing to the influence of storm waves driven by Donghae twister. The estimated annual average wave power was 4.5 kW/m at Sokcho, which was about two times larger than those at other two locations. It is noteworthy that this result is completely different from past researches based on wave hindcasting data. In addition, the estimates of wave power by the past researches seemed to be smaller than those of the present study, especially at the northern region of the east coast.

  • PDF

Surface Waves and Bottom Shear Stresses in the Yellow Sea (黃海에서의 波浪과 海底剪斷應力)

  • Kang, See Whan;Cho, Jei Kook
    • 한국해양학회지
    • /
    • v.19 no.2
    • /
    • pp.118-124
    • /
    • 1984
  • The amplitudes and periods of wind-driven, surface gravity waves in the Yellow Sea, were calculated using the SMB hindcasting method. Bottom orbital velocities and bottom shear stresses were then calculated on the basis of linear wave theory and Kajiura's (1968) turbulent oscillating boundary layer analyses. These calculations were made for northwesterly and southwesterly winds with a steady speed of 40 knots. The numerical results show that the wide offshore areas along the western Korean Peninsula are persistently subjected to the strong wave action and bottom shear stresses produced by the prevailing winds.

  • PDF

Investigation of the Design Wave Forces for Ear-Do Ocean Research Station I: Three Dimensional Hydraulic Model Tests (이어도 종합해양과학기지에 대한 설계파력의 검토 I: 삼차원 수리모형실험)

  • 전인식;심재설;최성진
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.4
    • /
    • pp.157-167
    • /
    • 2000
  • Korea Ocean Research and Development Institute performed the basic design of the Ear-Do Ocean Research Station in 1998. The design wave was taken to be the deep water wave which was obtained through wave hindcasting procedure. Wave forces acting on the structure were calculated by Morison formula utilizing the stream function theory of 5th. order. In the present study, a three dimensional hydraulic model testing was undertaken to investigate the validity of the basic design, measuring wave propagation over the Ear-Do, horizontal wave forces and air gaps. The measured forces were all compared by the corresponding values calculated by SACS program based on th design on the design wave. The results showed that in the three deep water wave directions (SSW, S, SE) the measured wave farces appeared less than the SACS calculated. But in the NNW wave direction, the measured forces generally exceeded the calculated values and showed a peculiar pattern very similar to the case that waves are superimposed by an unidirectional current. It was also found that the measured air gap underneath the structure appeared less than the values taken in the basic design for all wave directions.

  • PDF

Characteristics of Spread Parameter of the Extreme Wave Height Distribution around Korean Marginal Seas (한국 연안 극치 파고 분포의 확산모수 특성)

  • Jeong, Shin-Taek;Kim, Jeong-Dae;Ko, Dong-Hui;Kim, Tae-Heon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.6
    • /
    • pp.480-494
    • /
    • 2009
  • Long term extreme wave data are essential for planning and designing coastal structures. Since the availability of the field data for the waters around Korean peninsula is limited to provide a reliable wave statistics, the wave climate information has been generated by means of long-term wave hindcasting using available meteorological data. KORDI(2005) has proposed extreme wave data at 106 stations off the Korean coast from 1979 to 2003. In this paper, extreme data sets of wave(KORDI, 2005) have been analyzed for best-fitting distribution functions, for which the spread parameter proposed by Goda(2004) is evaluated. The calculated values of the spread parameter are in good agreement with the values based on method of moment for parameter estimation. However, the spread parameter of extreme wave data has a representative value ranging from about 1.0 to 2.8 which is larger than some foreign coastal waters, it is necessary to review deep water design wave.

Hindcasting Analysis of Swells Occurred in the East Coast in February 2008 (2008년 2월 동해안에서 발생한 너울의 예측 분석)

  • Kim, Tae-Rim;Lee, Kang-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.2
    • /
    • pp.62-67
    • /
    • 2010
  • Swells occurred on the coast of the East Sea on February 24, 2008 caused a loss of three lives and also damaged several west coasts of Japan. The recent increase of swell intensity with number of accidents demands more accurate forecasting of swells in terms of time and location. The swells occurred in February 2008 are hindcasted using SWAN model to examine the accuracy of the model for future forecasting. The model results are compared with ReWW3 data as well as measurement wave data and specially, wave spectrum is analysed by comparing with observed spectrum at two wave stations located in the east coast of Korea. The SWAN model shows similar results with observation data in terms of significant wave heights and swell arrival time but the shapes of wave spectrum are different between model and in-situ measurement data. For further improvement of swell forecasting, more comparison and analysis with observed wave spectrum is necessary and wave directional spectrum data are required to study on the characteristics of swells in the East Sea.