• Title/Summary/Keyword: Wave force analysis

Search Result 386, Processing Time 0.026 seconds

CFD Analysis of EFD-CFD Workshop Case 3 using Commercial and Open Source CFD codes (상용 및 오픈소스 CFD 코드를 이용한 EFD-CFD 워크샵 Case 3 해석)

  • Kim, Jong Rok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.3
    • /
    • pp.241-251
    • /
    • 2017
  • Computational fluid dynamics analysis was performed for the case 3 of the EFD-CFD workshop. Solvers were used for three commercial CFD codes(Star-CCM+, Fluent and CFX) and an open source CFD code(SU2). The grid were generated four types depending on the total cells using commercial grid generation code(Pointwise). Mach number of 0.4 and 0.8, 2 degree angle of attack and Mach number of 0.9, 1 degree angle of attack were calculated. Similar pressure coefficient curve and normal force coefficient were showed from the coarse grid to fine grid of four codes. But there is a difference in the drag coefficient. The position of the shock wave was predicted forward as the discretization order increased in calculations using Star-CCM+ and Fluent. The computation time to converge, Fluent, Star-CCM +, CFX are in order, and SU2 takes much time to converge.

A Study of Numerical Method for Analysis of the 3-Dimensional Nonlinear Wave-Making Problems (3차원 비선형 조파문제 해석을 위한 수치해법 연구)

  • Ha, Y.R.;An, N.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.5
    • /
    • pp.40-46
    • /
    • 2012
  • For free surface flow problem, a high-order spectral/boundary element method is adapted as an efficient numerical tool. This method is one of the most efficient numerical methods by which the nonlinear gravity waves can be simulated and hydrodynamic forces also can be calculated in time domain. In this method, the velocity potential is expressed as the sum of surface potential and body potential. Then, surface potential is solved by using the high-order spectral method and body potential is solved by using the high-order boundary element method. Using the combination of these two methods, the free surface flow problems of a submerged moving body are solved in time domain. In the present study, lifting surface theory is added to the former work to include effects of lift force. Therefore, a new formulation for the basic mathematical theory is introduced to contain the lift body in calculation.

Characteristic Analysis of Permanent Magnet Linear Generator by using Space Harmonic Method (공간고조파법을 이용한 영구자석 선형 발전기의 특성 해석)

  • Seo, Seong-Won;Choi, Jang-Young;Kim, Il-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.688-695
    • /
    • 2017
  • This paper deals with characteristics analysis of a permanent magnet (PM) linear generator using analytical methods for wave energy harvesting. The wave energy is carried out from the movement of a yo-yo system. A linear generator using permanent magnets to generate a magnetic force itself does not require a separate power supply and has the advantage of simple maintenance. In addition to the use of a rare earth, a permanent magnet having a high-energy density can be miniaturized and lightweight, and can obtain high energy-conversion efficiency. We derived magnetic field solutions produced by the permanent magnet and armature reaction based on 2D polar coordinates and magnetic vector potential. Induced voltage is obtained via arbitrary sinusoidal input. In addition, electrical parameters are obtained, such as back-EMF constant, resistance, and self- and mutual-winding inductances. The space harmonic method used in this paper is confirmed by comparing it with finite element method (FEM) results. These facilitate the characterization of the PM-type linear generator and provide a basis for comparative studies, design optimization, and machine dynamic modeling.

Seismic Fragility of Bridge Considering Foundation and Soil Structure Interaction (교량기초 종류 및 지반-구조물 상호작용을 고려한 지진취약도 분석)

  • Kim, Sun-Jae;An, Hyo-Joon;Song, Ki-il
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.129-137
    • /
    • 2020
  • In performing the structural analysis, the foundation is considered to be a fixed end as a plastic hinge model. In this study, the displacements of the foundation, pier, and shoe were compared when the foundation modeled as a fixed end, a shallow foundation constructed on bedrock of 2m depth, and a pile foundation constructed in the 10m to 20m depth of bedrock. The shear force was also compared, and the probability of damage was calculated and compared for the critical condition. When calculated as a fixed end, the displacement of the foundation converged to 0mm, but the shallow foundation built on the bedrock with a depth of 2m caused relatively displacement, and the pile foundation constructed to contact the bedrock with a depth of 18m caused a larger displacement. In addition, it was analyzed that the displacement of the foundation, which is the lower structure, affects the displacement of the super structure, but the difference in shear force applied to the foundation was insignificant in the three cases. There was no difference between the shallow foundation and the pile foundation in the influence on the displacement of the top of the pier, but there was a big difference from the analysis assuming as a fixed end.

Analysis on Seismic Resistance Capacity of Hollow Concrete Block Reinforced Foundation Ground by Using Shaking Table Test (진동대 시험을 이용한 중공블록 보강 기초의 내진성능분석)

  • Shin, Eun-Chul;Lee, Yeun-Jeung;Yang, Tae Chul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.85-93
    • /
    • 2021
  • The seventy percentage of Korean Peninsular is covered by the mountainous area, and the depth of west sea and south sea is relatively shallow. Therefore, a large scale land reclamation from the sea has been implemented for the construction of industrial complex, residental area, and port and airport facilities. The common problem of reclaimed land is consisted of soft ground, and hence it has low load bearing capacity as well as excessive settlement upon loading on the ground surface. The hollow concrete block has been used to reinforce the loose and soft foundation soil where the medium-high apartment or one-story industrial building is being planned to be built. Recently the earthquakes with the magnitude of 4.0~5.0 have been occurred in the west coastal and southeast coastal areas. Lee (2019) reported the advantages of hollow concrete block reinforced shallow foundation through the static laboratory bearing capacity tests. In this study, the dynamic behavior of hollow concrete block reinforced sandy ground with filling the crushed stone in the hollow space has been investigated by the means of shaking table test with the size of shaking table 1000 mm × 1000 mm. Three types of seismic wave, that is, Ofunato, Hachinohe, Artificial, and two different accelerations (0.154 g, 0.22 g) were applied in the shaking table tests. The horizontal displacement of structure which is situated right above the hollow concrete block reinforced ground was measured by using the LVDT. The relative density of soil ground are varied with 45%, 65%, and 85%, respectively, to investigate the effectiveness of reinforcement by hollow block and measured the magnitude of lateral movement, and compared with the limit value of 0.015h (Building Earthquake Code, 2019). Based on the results of shaking table test for hollow concrete block reinforced sandy ground, honeycell type hollow block gives a large interlocking force due to the filling of crushed stone in the hollow space as well as a great interface friction force by the confining pressure and punching resistance along the inside and outside of hollow concrete block. All these factors are contributed to reduce the great amount of horizontal displacement during the shaking table test. Finally, hollow concrete block reinforced sandy ground for shallow foundation is provided an outstanding reinforced method for medium-high building irrespective of seismic wave and moderate accelerations.

A Study on Seismic Performance Evaluation of Road Tunnel according to Seismic Analysis Conditions (내진해석 조건에 따른 도로터널 내진성능평가에 관한 연구)

  • Choi, Byoung-Il;Kim, Chan-Hee;Noh, Eun-Cheol;Ha, Myung-Ho;Park, Si-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.127-134
    • /
    • 2021
  • When constructing a tunnel on a stable ground, stress is changed in the ground during excavation stage and installation of ground support materials. In the standards for safety evaluation of structures in use, it is suggested to perform numerical analysis reflecting the excavation stage. But method of seismic performance evaluation was not presented. Therefore, in this study, numerical analysis was performed with different analysis methods, and the results were compared and analyzed. As a result of the numerical analysis, seismic wave applied in the horizontal direction were no difference depending on the analysis methods. However, there was a big difference in the result according to the evaluation methods of tunnel member forces. When reviewing with the strength design method, the structure performance could be not satisfied depending on the existence or nonexistence of reinforcing bars. Based on these research results, it is suggested that the interpretation method should be clearly presented and reflected in the relevant standards.

The electrical properties of PLZT thin films on ITO coated glass with various post-annealing temperature (ITO 기판에 제작된 PLZT 박막의 후열처리 온도에 따른 전기적 특성평가)

  • Cha, Won-Hyo;Youn, Ji-Eon;Hwang, Dong-Hyun;Lee, Chul-Su;Lee, In-Seok;Sona, Young-Guk
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.28-33
    • /
    • 2008
  • Lanthanum modified lead zirconate titanate ($Pb_{1.1}La_{0.08}Zr_{0.65}Ti_{0.35}O_3$) thin films were fabricated on indium doped tin oxide (ITO)-coated glass substrate by R.F magnetron sputtering method. The thin films were deposited at $500^{\circ}C$ and post-annealed with various temperature ($550-750^{\circ}C$) by rapid thermal annealing technique. The structure and morphology of the films were characterized with X-ray diffraction (XRD) and atomic force microscopy (AFM) respectively. The hysteresis loops and fatigue properties of thin films were measured by precision material analyzer. As the annealing temperature was increased, the remnant polarization value was increased from $10.6{\mu}C/cm^2$ to $31.4{\mu}C/cm^2$, and coercive field was reduced from 79.9 kV/cm to 60.9 kV/cm. As a result of polarization endurance analysis, the remnant polarization of PLZT thin films annealed at $700^{\circ}C$ was decreased 15% after $10^9$ switching cycles using 1MHz square wave form at ${\pm}5V$.

Numerical analysis of two and three dimensional buoyancy driven water-exit of a circular cylinder

  • Moshari, Shahab;Nikseresht, Amir Hossein;Mehryar, Reza
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.219-235
    • /
    • 2014
  • With the development of the technology of underwater moving bodies, the need for developing the knowledge of surface effect interaction of free surface and underwater moving bodies is increased. Hence, the two-phase flow is a subject which is interesting for many researchers all around the world. In this paper, the non-linear free surface deformations which occur during the water-exit of a circular cylinder due to its buoyancy are solved using finite volume discretization based code, and using Volume of Fluid (VOF) scheme for solving two phase flow. Dynamic mesh model is used to simulate dynamic motion of the cylinder. In addition, the effect of cylinder mass in presence of an external force is studied. Moreover, the oblique exit and entry of a circular cylinder with two exit angles is simulated. At last, water-exit of a circular cylinder in six degrees of freedom is simulated in 3D using parallel processing. The simulation errors of present work (using VOF method) for maximum velocity and height of a circular cylinder are less than the corresponding errors of level set method reported by previous researchers. Oblique exit shows interesting results; formation of waves caused by exit of the cylinder, wave motion in horizontal direction and the air trapped between the waves are observable. In 3D simulation the visualization of water motion on the top surface of the cylinder and the free surface breaking on the front and back faces of the 3D cylinder at the exit phase are observed which cannot be seen in 2D simulation. Comparing the results, 3D simulation shows better agreement with experimental data, specially in the maximum height position of the cylinder.

Numerical Analysis of Two-Dimensional Nonlinear Radiation Problem Using Higher-Order Boundary Element Method (고차경계요소법을 이용한 2차원 비선형 방사문제의 수치해석)

  • Hong-G. Sung;Hang-S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.1
    • /
    • pp.67-81
    • /
    • 2000
  • An accurate and efficient numerical method for two-dimensional nonlinear radiation problem has been developed. The wave motion due to a moving body is described by the assumption of ideal fluid flow, and the governing Laplace equation can be effectively solved by the higher-order boundary element method with the help of the GMRES (Generalized Minimal RESidual) algorithm. The intersection or corner problem is resolved by utilizing the so-called discontinuous elements. The implicit trapezoidal rule is used in updating solutions at new time steps by considering stability and accuracy. Traveling waves caused by the oscillating body are absorbed downstream by the damping zone technique. It is demonstrated that the present method for time marching and radiation condition works efficiently for nonlinear radiation problem. To avoid the numerical instability enhanced by the local gathering of grid points, the regriding technique is employed so that all the grids on the free surface may be distributed with an equal distance. This makes it possible to reduce time interval and improve numerical stability. Special attention is paid to the local flow around the body during time integration. The nonlinear radiation force is calculated by the "acceleration potential technique". Present results show good agreement with other numerical computations and experiments.

  • PDF

Inequality Factors and Trend in the Earnings of Self-Employed (자영업 근로소득의 불평등 요인과 변화)

  • Ji, Eun-Jeong
    • Korean Journal of Social Welfare
    • /
    • v.64 no.2
    • /
    • pp.55-83
    • /
    • 2012
  • Self-employment rate is high in Korean labor market, while the income gap within self-employed is also high. Although, there are very few studies that addressed on the income inequality of self-employed. Thus, this study has measured the earnings inequality of self-employed by generalized entropy indices and decomposed inequality factor and trend. The empirical study is based on Korea Welfare Panel Study wave 1~4. The main result from this analysis is summarized in three points. Firstly, earnings inequality of self-employed is severely high and the earnings polarization within self-employed has become more serious in Korea. Secondly, this study provides the evidence that the main factor of earnings inequality of self-employed is the status of self-employment, education level, age group, workplace scale and industry. Thirdly, the contribution of relative changes in the incomes of the status of self-employment is the largest to the inequality trend. In terms of education level, age group and industry, the increase of inequality within group(pure effect) mainly attributes to the rise of earnings inequality of self-employed and the change effect of group composition contributes to deterioration of inequality.

  • PDF