• Title/Summary/Keyword: Wave flow field

Search Result 398, Processing Time 0.024 seconds

Fluid Flow in a Circular Cylinder Subject to Circulatory Oscillation-Theoretical Analysis (회전요동하는 원통내의 유동특성 - 이론적 해석)

  • Seo,Yong-Gwon;Kim, Hyeon-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.3960-3969
    • /
    • 1996
  • A fluid flow inside a circular cylinder subject to horizontal and circular oscillation is analyzed theoretically. Under the assumption of small-amplitude oscillation, the governing equations take linear forms. The velocity field is obtained in terms of the first kind of Bessel function of order 1. It was found that a particle describes an orbit close to a circle in the central region and an arc near the side wall. We also obtained the Stokes' drift velocity induced by the traveling wave along the circumferential direction. The Eulerian streaming velocities at the edge of the bottom and side boundary layers were also obtained. It was shown that the vertical component of the steady streaming velocity on the side wall is almost proportional to the amplitude of the free surface motion.

Open End Correction for the Reflection and Discharge of Weak Shock Wave (약한 충격파의 반사와 방출에 관한 개구단 보정)

  • Lee, D.H.;Kim, H.D.;Setoguchi, T.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.349-354
    • /
    • 2001
  • The present study addresses the open end correction associated with the reflection and discharge phenomena of a weak shock wave from an open end of a duct. The open end correction of the weak shock wave is investigated experimentally and by numerical computation. An experiment is made using a simple shock tube with an open end, and computation is performed to simulate the experimental flow field using the unsteady, axisymmetric, compressible, flow governing equations. The results obtained show that an open end correction should be involved for shock wave discharge and reflection problems generated from the exit of the duct with an open end baffle plate. With a baffle plate less than three times the duct diameter, it is found that the open end correction is a function of both the diameter of the baffle plate and normal shock wave magnitude. However, for a baffle plate larger than three times the duct diameter, it is independent of the baffle plate diameter. The present computations predict the results of shock tube experiment with good accuracy. A new empirical equation for prediction of the open end correction is found for the weak shock reflection and discharge phenomena occurring at the open end of the duct with and without a baffle plate.

  • PDF

Study of the Open End Correction of the Impulsive Wave Discharging from a Duct Exit (관출구로부터 방출하는 펄스파의 개구단 보정에 관한 연구)

  • 이동훈;김희동
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.7
    • /
    • pp.239-246
    • /
    • 2001
  • The present study addresses the open correction associated with the reflection and discharge phenomena of a weak shock wave from an open end of a duct. The open correction of the weak shock wave is investigated experimentally and by numerical computation. An experiment is made using a simple shock tube with an open end. and computaion is performed to simulate the experimental flow field using the unsteady, axisymmetric compressible. flow governing equations. The results obtained show the an open correction should be involved for shock wave discharge and reflection problems generated from the exit of the duct with an open baffle plate. With a baffle plate less than three times the duct diameter, it is found that the open end correction is a function of both the diameter of the baffle plate and normal shock wave magnitude However, for a baffle plate larger than three the duct diameter it is independent of the baffle plate diametre, The present computations predict the results of shock tube experiment with good accuracy. A new empirical equation for prediction of the open correction is found for the weak shock reflection and discharge phenomena occurring at the open of the duct with and without a baffle plate.

  • PDF

Numerical study on the interaction between unsteady compression and unsteady expansion wave (비정상 압축파와 비정상 팽창파의 간섭에 관한 수치해석적 연구)

  • Kim, Hui-Dong;Setoguchi, Toshiaki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.11
    • /
    • pp.1413-1421
    • /
    • 1997
  • A new control method to alleviate the impulsive noise at the exit of high-speed railway tunnel was applied to the compression wave at the entrance of the tunnel. This method uses the interaction phenomenon of unsteady expansion wave and unsteady compression wave. Unsteady expansion wave was assumed to be made instantaneously by the simple theory of shock tube. Total Variation Diminishing method was employed to solve the axisymmetric unsteady compressible flow field with a specified compression wave. Numerical results show that the maximum pressure gradient of the propagating compression wave decreases with increase of the wave length of the unsteady expansion wave. It is found that the impulsive noise reduction can be obtained when the unsteady expansion wave with a large wave length is emitted just before the train enters the tunnel. The present results give the possibility to reduce the impulsive noise at the exit of tunnel.

Passive Control of Condensation Shock Wave in a Transonic Nozzle (천음속 노즐에서 발생하는 응축충격파의 피동제어)

  • Kim, Hui-Dong;Baek, Seung-Cheol;Gwon, Sun-Beom
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.666-674
    • /
    • 2002
  • A rapid expansion of the moist air or stream through transonic nozzle often leads to not-equilibrium condensation shock, causing a considerable amount of energy loss to the entire flow field. Depending on amount of heat released, condensation shock wave occurs in the nozzle and interacts with the boundary layer flow. In the current study, a passive control technique using a porous wall with a plenum cavity underneath is applied for purpose of alleviation the condensation shock wave in a transonic nozzle. A droplet growth equation is incorporated into two-dimensional wavier-Stokes equation systems. Computations are carried out using a third-order MUSCL type TVD finite-difference scheme with a second-order fractional time step. An experiment using an indraft transonic wind tunnel is made to validate the present computational results. The results obtained show that the magnitude of condensation shock wave is reduced by the current passive control method.

Study of the Impulse Wave Impinging upon an Inclined Flat Plate (경사판에 충돌하는 펄스파에 관한 연구)

  • Kweon, Y.H.;Lee, D.H.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.438-443
    • /
    • 2001
  • Plate impingement of the impulse wave discharged from the open end of a duct is numerically investigated using a CFD method. Harten-Yee Total Variation Diminishing method is used to solve the unsteady, compressible flow governing equations. The Mach number, the flat plate inclination and the distance between the duct exit and inclined flat plate are changed to investigate their effects on the impinging flow field. The impulse wave impingement on the inclined flat plate depends on Mach number $M_s$ and the plate inclination $\psi$. The pressure distributions on the inclined flat plate show that for a small r/D, the peak pressure at the center of an inclined flat plate decreases with an increase in the plate inclination $\psi$ in the range of $\psi$ from $45^{\circ}$ to $60^{\circ}$ but for a large r/D, the peak pressure decreases with an increase in $\psi$ in the range of $\psi$ from $75^{\circ}$ to $90^{\circ}$. It is also found that for all of r/D, the peak pressure at the center of an inclined flat plate has a maximum value in $\psi=90^{\circ}$.

  • PDF

Development of indirect EFBEM for radiating noise analysis including underwater problems

  • Kwon, Hyun-Wung;Hong, Suk-Yoon;Song, Jee-Hun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.3
    • /
    • pp.392-403
    • /
    • 2013
  • For the analysis of radiating noise problems in medium-to-high frequency ranges, the Energy Flow Boundary Element Method (EFBEM) was developed. EFBEM is the analysis technique that applies the Boundary Element Method (BEM) to Energy Flow Analysis (EFA). The fundamental solutions representing spherical wave property for radiating noise problems in open field and considering the free surface effect in underwater are developed. Also the directivity factor is developed to express wave's directivity patterns in medium-to-high frequency ranges. Indirect EFBEM by using fundamental solutions and fictitious source was applied to open field and underwater noise problems successfully. Through numerical applications, the acoustic energy density distributions due to vibration of a simple plate model and a sphere model were compared with those of commercial code, and the comparison showed good agreement in the level and pattern of the energy density distributions.

On the Viscous Flow Around Breaking Waves Generated by a Submerged Cylinder(Part 3 : Survey of Flow Field Using PIV Technique) (몰수실린더에 의하여 생성되는 쇄파주위 점성유동의 고찰(제3부 : PIV를 이용한 순간유동장 해석))

  • B.S. Hyun;Y.H. Shin;K.S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.2
    • /
    • pp.38-45
    • /
    • 2000
  • A breaking-wave caused by a cylinder moving under the free-surface is studied, which is designed to unveil the interaction between breaker and cylinder using PIV at CWC. The detailed structures of the vortical flow is obtained from the velocity field measured by PIV technique. The vorticity distribution behind the breaker and originated from the breaker. It has been obvious that the vortices from breaker greatly affect the whole wake field at S/D=1. Certainly PIV was confirmed to be a very versatile means to investigate the complex flow fields such as breaking wave.

  • PDF

A Study on the Influence Coaxial Parallel Magnetic Field upon Plasma Jet (II) (Plasma Jet의 동축평행자계에 의한 영향에 관한 연구 2)

  • Choon Saing Jhoun
    • 전기의세계
    • /
    • v.22 no.5
    • /
    • pp.19-32
    • /
    • 1973
  • This paper treats with some of plasma jet behaviors under magnetic field for the purpose of controlling important characteristics of plasma jet in the practices of material manufacturings. Under the existence and non-existence of magnetic field, the pressure distribution, flame length, stability and noise of plasma jet are comparatively evaluated in respect of such parameters as are current, gap of electrode, quantity of argon flow, magnetic flux density, diameter and length of nozzle. The results are as follows: 1) the pressure, the length and the noise of plasma jet rise gradually with the increase of are current, and have high values under identical arc current as the diameter of nozzle increases, but reverse phenomenon tends to appear in the noise. 2) The pressure, the flame length and the noise increase with the increased quantity of argon flow, and the rising slope of noise is particularly steep. Under magnetic field, the quantity of argon flow in respect of flame length has the critical value of 80(cfh). 3) The pressure and length of flame decrease with small gradient value as the length of gap increases, but the noise tends to grow according to the increase of nozzle diameter. 4) The pressure and the length of jet flame decrease inversly with the increase of magnetic flux density, which have one critical value in the 100 amps of arc current and two values in 50 amps. The pressure of jet flame can be below atomospher pressure in strong magnetic field. 5) "The constriction length of nozzle has respectively the critical value of 6(mm) for pressure and 23(mm) for the length of flame. 6) Fluctuations in the wave form of voltage become greater with the increase of argon flow and magnetic flux density, but tends to decrease as arc current increases, having the frequency range of 3-8KHz. The wave form of noise changes almost in parallel with that of voltage and its changing value increases with argon flow, arc current and magnetic flux density, having the freuqency range of 6-8KHz. The fluctuation of jet presurre is reduced with the increase of argon flow and magnetic flux density and grows with arc current.rent.

  • PDF

Magnetostrictive Grating with an Optimal Yoke for Generating High-Output Frequency-Tuned SH Waves in a Plate (최적 요크를 갖는 자기변형 그레이팅을 이용한 고출력 주파수 튜닝 평판 SH 파 발생)

  • Kim, Woo-Chul;Kim, Ik-Kyu;Kim, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.71-74
    • /
    • 2007
  • The objective of this presentation is to introduce a recent development of a magnetostrictive grating technique using an optimal yoke to efficiently generate and measure SH (Shear-Horizontal) waves in a plate. Gratings are effective means to generate frequency-tuned waves, but the gap between magnetostrictive gratings inevitably obstructs magnetic flow. Because magnetic field is the main physical quantity to actuate and sense ultrasonic waves, the transducer performance is most significantly influenced by the magnetic field distribution in the strips. Thus, wave transduction efficiency can be substantially improved if better magnetic flow is formed in the strips. To improve the efficiency, the topology optimization method was used to determine an optimal yoke configuration. A series of experiments on an aluminum plate were conducted using a grating with and without the designed yoke; when the yoke was used, the signal outputs increased up to 60 %.

  • PDF