• Title/Summary/Keyword: Wave field

Search Result 2,513, Processing Time 0.024 seconds

Characteristics of Wave Propagation by Water Level Conditions at Wando Sea Area: Numerical Modeling (완도 해역의 해수면 조건에 따른 파랑 변형 특성)

  • Jeon, Yong-Ho;Yoon, Han-Sam;Kim, Dong-Hwan;Kim, Won-Seok;Kim, Heon-Tae
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.25 no.1
    • /
    • pp.1-11
    • /
    • 2013
  • The aim of this study was estimated the characteristics of the wave propagation by the water level conditions using a numerical modeling method at the Wando sea area. For three cases numerical simulation on the condition of incident and incoming of the deepwater design wave and the season normal wave, the spatial distribution of the incident wave at study area were investigated. And the calculated numerical modeling results were compared with measured field wave data. According to on-site wave data measured for 18 days, the range of the significant wave height and period were 0.10~1.14 m, 4.35~8.74 sec, respectively, and the maximum wave height were 0.15~1.66 m. From the results of numerical model for offshore design wave incident, the wave height attacked from Southern-East direction at this study area were over maximum 10.5 m because of rapidly change of water depth. Numerical modeling by three water level conditions of Approxmate Lowest Low Water Level(Approx. L.L.W), Mean Sea Level(M.S.L) and Approximate Highest High Water Level(Approx. H.H.W) were practiced. From the results for the case of Approx. H.W.L, variations of wave height at the back area of islands were about 1.6 m at maximum value for the case of deepwater design wave incoming. The significant wave heights of winter season were bigger than summer under normal wave condition, the incident wave height over 5.5 m decreased by shielding effect of islands. The change of maximum wave height at summer season were distinct than winter and was about 1.2 m and 0.8 m, respectively.

Dynamics of Transverse Magnetic Domain Walls in Rectangular-shape Thin-film Nanowires Studied by Micromagnetic Simulations

  • Lee, Jun-Young;Choi, Sang-Kook;Kim, Sang-Koog
    • Journal of Magnetics
    • /
    • v.11 no.2
    • /
    • pp.74-76
    • /
    • 2006
  • Dynamic behaviors of transverse domain walls (TDWs) in rectangular shaped thin-film magnetic nanowires with different widths under applied magnetic fields less than the Walker field were studied by micromagnetic simulations. It was found that the velocity of stable TDWs in the viscous region increases from 147 to 419 m/s and their mass decreases from $6.24{\times}10^{-23}\;to\;2.70{\times}10^{-23}kg$ with increasing strength of the applied magnetic field ranging from 5 to 20 Oe for the nanowire with a dimension of 10 nm in thickness and $5{\mu}m$ in length, and 50 nm in width. With increasing the width of nanowires from 50 to 125 nm at a specific field strength of 5 Oe, the TDW's velocity also increases from 147 to 246 m/s and its mass decreases from $6.24{\times}10^{-23}\;to\;5.91{\times}10^{-23}kg$.

Quantitative Measurements of Complex Flow Field Around a Hydrofoil Using Particle Image Velocimetry (PIV를 이용한 수중익 주위 복잡유동장의 정량적 계측)

  • B.S. Hyun;K.S. Choi;D.H. Doh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.3
    • /
    • pp.37-44
    • /
    • 2000
  • An experimental study has been carried out at circulating water channel to investigate the viscous flow around breaking waves generated by a submerged hydrofoil(NACA0012). Detailed flow measurements were made at several critical points including an incipient wave-breaking point and a fully-developed wave breaker. Particle Image Velocimetry(PIV) was employed to visualize the flow field very close to the breaker as well as at the near- and far-wake of the breaker. Generation, development and decay of the wave breaker have been investigated. It is found that PIV technique could be well applied to the complex flow field, including the vortical structures near the free surface as well as the wake of the hydrofoil.

  • PDF

Prediction of Radiated Sound on Structure-acoustic Coupled Plate by the Efficient Configuration of Structural Sensors (구조센서의 효율적인 구성을 통한 구조 음향연성 평판의 방사음 예측)

  • Lee, Ok-Dong;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.9
    • /
    • pp.695-705
    • /
    • 2014
  • In this paper, two types of techniques for the prediction of radiated sound pressure due to vibration of a structure are investigated. The prediction performance using wave-number sensing technique is compared to that of conventional prediction method, such as Rayleigh's integral method, for the prediction of far-field radiated sound pressure. For a coupled plate, wave-number components are predicted by the vibration response of plate and the prediction performance of far-field sound is verified. In addition, the applicability of distributed sensors that are not allowable to Rayleigh's integral method is considered and these can replace point sensors. Experimental implementation verified the prediction accuracy of far-field sound radiation by the wave-number sensing technique. Prediction results from the technique are as good as those of Rayleigh's integral method and with distributed sensors, more reduced computation time is expected. To predict the radiated sound by the efficient configuration of structural sensors, composed(synthesized) mode considering sound power contribution is determined and from this size and location of sensors are chosen. Four types of sensor configuration are suggested, simulated and compared.

Application of 3-D Numerical Method (LES-WASS-3D) to Estimation of Nearshore Current at Songdo Beach with Submerged Breakwaters (잠제가 설치 된 부산 송도해수욕장의 해빈류 예측에 관한 3차원 수치해석기법(LES-WASS-3D)의 적용)

  • Hur, Dong-Soo;Lee, Woo-Dong;Kim, Myoung-Kyu;Yoon, Jong-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.14-21
    • /
    • 2013
  • This study examined the field application of a 3-D numerical model (LES-WASS-3D) to the estimation of the nearshore current at Songdo beach, Busan. The wave and tide conditions observed at Songdo beach during Typhoon Ewiniar (July 10, 2006) were used in a numerical simulation. The numerical wave heights were in good agreement with the field data. The spatial distributions of the wave heights, mean water levels, and mean flows obtained from the numerical simulation are discussed in relation to the bottom topographical change near Songdo beach before and after Typhoon Ewiniar. The results revealed that LES-WASS-3D is a powerful tool for estimating the nearshore current in the field.

Smart Far-Field Wireless Power Transfer via Time Reversal (시간 역전을 기반으로 한 지능적 원거리 무선전력전송)

  • Park, Hong Soo;Hong, Ha Young;Hong, Sun K.
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.4
    • /
    • pp.285-289
    • /
    • 2018
  • In this paper, we demonstrate electromagnetic wave focusing and rectification based on time reversal as a smart method for far-field wireless power transfer. Time reversal in a complex propagation environment allows for transmission of high peak power pulses by focusing the electromagnetic waves selectively regardless of the receiver position. We demonstrate wave focusing and radio frequency (RF) to direct current (DC) rectification via numerical simulation of a complex propagation environment. The results reveal that time reversal can ensure peak power up to 12 dB greater compared to a narrowband continuous wave signal, thereby enhancing the rectified DC voltage with better efficiency.

Numerical Analysis of Loss Power Properties in the Near-Field Electromagnetic Wave Through A Microstrip Line for Multilayer Magnetic Films with Different Levels of Electrical Conductivity

  • Lee, Jung-Hwan;Kim, Sang-Woo
    • Journal of Magnetics
    • /
    • v.13 no.3
    • /
    • pp.92-96
    • /
    • 2008
  • There are few reports of high frequency loss behavior in the near-field for magnetic films with semiconducting properties, even though semiconducting magnetic materials, such as soft magnetic amorphous alloys and nanocrystalline thin films, have been demonstrated. The electromagnetic loss behavior of multilayer magnetic films with semiconducting properties on the microstrip line in quasi-microwave frequency band was analyzed numerically using a commercial finite-element based electromagnetic solver. The large increase in the absorption performance and broadband characteristics of the semiconducting/insulating layer magnetic films examined in this study were attributed to an increase in the loss factor of resistive loss. The electromagnetic reflection increased significantly with increasing conductivity, and the loss power deteriorated significantly. The numerical results of the magnetic field distribution showed that a strong radiated signal on the microstrip line was emitted with increasing conductivity and decreasing film thickness due to re-reflection of the radiated wave from the surface of the magnetic film, even though the emitted levels varied with film thickness.

Propagation Characteristics of the Impulse Noise Emitted from the Exit of a Perforated Pipe (다공관 출구로부터 방사된 충격성 소음의 전파특성)

  • 제현수;양수영;이동훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.168-173
    • /
    • 2003
  • This experimental study describes the propagation characteristics of the impulse noise emitted from the exit of a perforated pipe attached to the open end of a simple shock tube. The pressure amplitudes and directivities of the impulse wave propagating from the exit of perforated pipe with several different configurations are measured and analyzed fur the range of the incident shock wave Mach number between 1.02 and 1.2. In the experiments, the impulse waves are visualized by a Schlieren optical system for the purpose of investigating their propagation pattern. The results obtained show that for the near sound field the impulse noise strongly propagates toward to the pipe axis, but for the far sound field the impulse noise uniformly propagates toward to the all directions, indicating that the directivity pattern is almost same regardless of the pipe type. Moreover, it is shown that for the far sound field the perforated pipe has little performance to suppress the impulse noise.

  • PDF

Study on the Radar Detection Probability Change Considering Environmental Attenuation Factor (환경감쇠인자를 고려한 레이더 탐지 확률 변화에 관한 연구)

  • Kim, Young-Woong;Park, Sang-Chul
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.4
    • /
    • pp.23-28
    • /
    • 2015
  • The detection field is an important sector of the factors influencing the battle field. Basically, The radar emits a radio wave to perform the detection in the existing way. However, When most existing radars identify target by signal processing to return radio wave, Environmental attenuation factor does not reflected. The radar using this radio wave has got the possibility changing detect result depending on attenuation factor by environmental conditions, The operational problems may arise in a real battle field. Therefore, In this paper, When emitted radio waves were come back, Reflecting the environmental attenuation factor, Experimental attempts to identify the target to enable more accurately.

Implementation of High Accurate Level Sensor System using Pulse Wave Type Magnetostriction Sensor (펄스파 자왜 센서를 이용한 고정밀 액위 센서 시스템의 실현에 관한 연구)

  • Choi, Woo-Jin;Lee, John-Tark
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.395-400
    • /
    • 2013
  • In this paper, we introduce the implementation of high accurate level sensor system using the pulse wave type magnetostriction sensor. When a current pulse flows along the waveguide, the magnetic field also propagates towards the end of waveguide. When this magnetic field just passes the position of the magnet for level detection, the resultant magnetic field by these two magnetic fields makes a torsional reflected signal. This is used to calculate the time difference between a interrogation pulse wave and this torsional reflected signal. The key elements and characteristics were investigated to implement level sensor system based on this principle. We introduce a method to calculate the speed of ultrasonic reflected signal and how to make a model of sensing coil. In particular, we experiment with the characteristics of the torsional reflected signal according to the changes of the interrogation voltage and displacement. To make high accurate level sensor system, two methods were compared. One is to use the comparator and time counter, the other is STFT(Short Time FFT) which is capable of the time-frequency analysis.