• 제목/요약/키워드: Wave decomposition

검색결과 119건 처리시간 0.025초

Transverse Wave Propagation in [ab0] Direction of Silicon Single Crystal

  • Yun, Sangjin;Kim, Hye-Jeong;Kwon, Seho;Kim, Young H.
    • 비파괴검사학회지
    • /
    • 제35권6호
    • /
    • pp.381-388
    • /
    • 2015
  • The speed and oscillation directions of elastic waves propagating in the [ab0] direction of a silicon single crystal were obtained by solving Christoffel's equation. It was found that the quasi waves propagate in the off-principal axis, and hence, the directions of the phase and group velocities are not the same. The maximum deviation of the two directions was $7.2^{\circ}$. Two modes of the pure transverse waves propagate in the [110] direction with different speeds, and hence, two peaks were observed in the pulse echo signal. The amplitude ratio of the two peaks was dependent on the initial oscillating direction of the incident wave. The pure and quasi-transverse waves propagate in the [210] direction, and the oscillation directions of these waves are perpendicular to each other. The skewing angle of the quasi wave was calculated as $7.14^{\circ}$, and it was measured as $9.76^{\circ}$. The amplitude decomposition in the [210] direction was similar to that in the [110] direction, since the oscillation directions of these waves are perpendicular to each other. These results offer useful information in measuring the crystal orientation of the silicon single crystal.

비틀림 유도파를 이용한 배관 축방향 결함 특성 규명 (Characterization of Axial Defects in Pipeline Using Torsional Guided Wave)

  • 김영완;박경조
    • 한국소음진동공학회논문집
    • /
    • 제25권6호
    • /
    • pp.399-405
    • /
    • 2015
  • In this work we use the mode decomposition technique employing chirplet transform, which is able to separate the individual modes from dispersive and multimodal waveform measured with the magnetostrictive sensor. The mode decomposition technique is also used to estimate the time-frequency centers and individual energies of the reflection, which would be used to locate and characterize axial defects. The arrival times of the separated modes are calculated and the axial defect lengths can be evaluated by using the estimated arrival time. Results from an experiment on a carbon steel pipe are presented and it is shown that the accurate and quantitative defect characterization could become enabled using the proposed technique.

Vibration analysis of wave motion in micropolar thermoviscoelastic plate

  • Kumar, Rajneesh;Partap, Geeta
    • Structural Engineering and Mechanics
    • /
    • 제39권6호
    • /
    • pp.861-875
    • /
    • 2011
  • The aim of the present article is to study the micropolar thermoelastic interactions in an infinite Kelvin-Voigt type viscoelastic thermally conducting plate. The coupled dynamic thermoelasticity and generalized theories of thermoelasticity, namely, Lord and Shulman's and Green and Lindsay's are employed by assuming the mechanical behaviour as dynamic to study the problem. The model has been simplified by using Helmholtz decomposition technique and the resulting equations have been solved by using variable separable method to obtain the secular equations in isolated mathematical conditions for homogeneous isotropic micropolar thermo-viscoelastic plate for symmetric and skew-symmetric wave modes. The dispersion curves, attenuation coefficients, amplitudes of stresses and temperature distribution for symmetric and skew-symmetric modes are computed numerically and presented graphically for a magnesium crystal.

초음파 탐촉자의 분극성에 따른 CFRP 복합적층판 평가에 관한 연구 (On Evaluation of CFRP Composite Laimates Using Ultrasonic Transducers with Polarization Direetion)

  • 나승우;임광희;양인영
    • 한국안전학회지
    • /
    • 제17권1호
    • /
    • pp.39-44
    • /
    • 2002
  • This paper shows error in the polarization direction on ultrasonic transducers how sensitive the shear ultrasonic waves are to a little misoriented plies according to the angle variation of shear ultrasonic waves $0{\circ},\;45{\circ}$ and $90{\circ}$. Also, it is shown that shear waves, particularly the transmission mode with the transmitter and receiver perpendicular to cach other, have high sensitivity for detecting anomalies in fiber orientation and ply layup sequence that may occur in the manufacturing of composite laminates. Experimental results are agreed with a modeling solutions which was based on decomposition of shear wave polarization vector as it propagates through the composite laminates. This wave appeared considerably to be sensitive to CFRP composites to thickness direction along in-plane fibers.

채터상황에서 마모된 공구가 받는 절삭력 해석 (Cutting Force Analysis Under Chatter Condition with a Worn Tool)

  • 권원태
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.292-301
    • /
    • 1994
  • The resultant cutting force during machining with a worn tool is viewed as a decomposition of the cutting force into a cutting force component related to chip removal from the workpiece and into a component dependent on the contact force between the tool flank's wear land and the workpiece. The shear line method, in which the cutting force is considered proportional to the length of the shear line, is used to calculate the cutting force component for the removal of the chip, while the elastic effect of the workmaterial on the tool is taken into consideration to analyze the effect of tool flank wear. The predicted resultant cutting force, expressed as the sum of both components, is compared to experimental data obtained during wave-on-wave cutting.

Three-dimensional Detonation Cell Structures in a Circular Tube

  • Cho, D.R.;Won, S.H.;Shin, Edward J.R.;Choi, J.Y.
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.597-601
    • /
    • 2008
  • Three-dimensional structures of detonation wave propagating in circular tube were investigated. Inviscid fluid dynamics equations coupled with a conservation equation of reaction progress variable were analyzed by a MUSCL-type TVD scheme and four stage Runge-Kutta time integration. Variable-$\gamma$ formulation was used to account for the variable properties between unburned and burned states and the chemical reaction was modeled by using a simplified one-step irreversible kinetics model. The computational code was parallelized based on domain decomposition technique using MPI-II message passing library. The computations were carried out using a home made Windows based PC cluster having 160 AMD AthloxXP and Athlon64 processor. The computational domain consisted of through a roundshaped tube with wall conditions. As an initial condition, analytical ZND solution was distributed over the computational domain with disturbances. The disturbances has circumferential large gradient. The unsteady computational results in three-dimension show the detailed mechanisms of multi-cell mode of detonation wave instabilities resulting diamond shape in smoked-foil record.

  • PDF

착저식 인공어초에 작용하는 파력특성에 관한 연구 (A Study on the Characteristics of Wave Forces on Artificial Reefs)

  • 류청로;김현주
    • 한국수산과학회지
    • /
    • 제27권5호
    • /
    • pp.605-612
    • /
    • 1994
  • The methods to determine the hydrodynamic coefficients for the fixed type artificial reefs which were constructed to control ecological system in coastal waters are compared and discussed by model test results. To calculate the wave forces, least square method show good agreement with the experimental results and more stability than maximum force component method or Fourier decomposition method. This modified least square method of weighting the square of measured force turned out to be the most feasible method for maximum force. Using the feasible method, hydrodynamic characteristics for artificial reefs on uniform slopes offshore and breaking zone were studied. They were properly related to Keulegan-Carpenter's number and found larger than previous results. Wave force coefficients for artificial reefs around breaking zone were distributed from 1.5 to 2.5, and the mean value was 2.0. Drag force components were more in evidence than inertia force in maximum force which is important parameter to evaluate stability for high-permeability structures. A formula for the calculation of the maximum force for artificial reefs design is proposed, using structural dimension, water particle velocity and Keulegan-Carpenter's number.

  • PDF

Mn-TiO2 촉매의 가시광촉매 특성 (The characteristics of Mn-TiO2 catalyst for visible-light photocatalyst)

  • 김문찬
    • 분석과학
    • /
    • 제24권6호
    • /
    • pp.493-502
    • /
    • 2011
  • 본 연구에서는 가시광촉매의 특성을 나타낼 수 있는 촉매를 제조하여 촉매를 특성화 하였으며, toluene, xylene, MEK (methyl ethyl ketone), ammonia를 반응물로 하여 기존의 UV-광촉매와 분해능을 비교 실험하였다. UV-광촉매는 파장범위가 280~360 nm 근처에서 광촉매가 활성화된다. 그러나 가시광촉매는 가시광영역인 400~750 nm의 파장영역에서도 광촉매가 활성화 된다. 이것을 UV-Vis 흡수도로 파악하였다. 그리고 가시광촉매의 성능을 향상시키기 위하여 여러 가지 재료로 도핑하는데, 여기서는 망간에 Pt를 부가하여 성능향상을 꾀하였다. Pt를 첨가한 가시광 촉매의 경우 성능이 향상되었음을 알 수 있었다. 그리고 바인더로 MTMS (methyl tri methoxy silane)를 사용하였으며 바인더양에 따른 접촉각을 측정하였다. MTMS 함량이 증가할수록 접촉각이 커졌다. 따라서 친수성이 줄어든 것으로 나타났다. 그리고 Mn-$TiO_2$ 촉매의 항균성이 매우 우수한 것으로 나타났다.

정사각관 내 데토네이션 파 구조의 삼차원 수치 해석 (Three-dimensional Numerical Analysis of Detonation Wave Structures in a Square Tube)

  • 조덕래;원수희;신재렬;이수한;최정열
    • 한국추진공학회지
    • /
    • 제11권1호
    • /
    • pp.1-10
    • /
    • 2007
  • 반응 진행 변수 보존 방정식 및 1단계 비가역 반응과 연계된 고해상도 전산유체 코드를 이용하여 관 내부를 전파하는 데토네이션 파의 삼차원 구조를 관찰하였다. 코드는 영역 분할에 기초하여 MPI 라이브러리를 이용하여 병렬화하였으며, AMD 프로세서로 구성된 Windows 클러스터를 이용하여 실행하였다. 삼차원 비정상 해석으로부터 데토네이션 파의 불안정성으로 유발된 그을음 막 기록(smoked-foil record)을 얻을 수 있었으며, 이로부터 초기 교란 조건에 따라 직사각 모드나 대각 모드의 셀 구조와 함께 작은 반응 상수 조건에서는 회전 데토네이션 파를 관찰할 수 있었다.

Unsteady Aerodynamic Loads on High Speed Trains Passing by Each Other

  • Hwang, Jae-Ho;Lee, Dong-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제14권8호
    • /
    • pp.867-878
    • /
    • 2000
  • In order to study unsteady aerodynamic loads on high speed trains passing by each other 350km/h, three-dimensional flow fields around trains during the crossing event are numerically simulated using three-dimensional Euler equations. Roe's FDS with MUSCL interpolation is employed to simulate wave phenomena. An efficient moving grid system based on domain decomposition techniques is developed to analyze the unsteady flow field induced by the restricted motion of a train on a rail. Numerical simulations of the trains passing by on the double-track are carried out to study the effect of the train nose-shape, length and the existence of a tunnel on the crossing event. Unsteady aerodynamic loads-a side force and a drag force-acting on the train during the crossing are numerically predicted and analyzed. The side force mainly depends on the nose-shape, and the drag force depends on tunnel existence. Also. a push-pull (i.e.impluse force) force successively acts on each car and acts in different directions between the neighborhood cars. The maximum change of the impulsive force reaches about 3 tons. These aerodynamic force data are absolutely necessary to evaluate the stability of high speed multi-car trains. The results also indicate the effectiveness of the present numerical method for simulating the unsteady flow fields induced by bodies in relative motion.

  • PDF