• Title/Summary/Keyword: Wave Refraction

Search Result 206, Processing Time 0.024 seconds

Geometric and Wave Optic Features in the Optical Transmission Patterns of Injection-molded Mesoscale Pyramid Prism Patterned Plates

  • Lee, Je-Ryung;Je, Tae-Jin;Woo, Sangwon;Yoo, Yeong-Eun;Jeong, Jun-Ho;Jeon, Eun-chae;Kim, Hwi
    • Current Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.140-146
    • /
    • 2018
  • In this paper, mesoscale optical surface structures are found to possess both geometric and wave optics features. The study reveals that geometric optic analysis cannot correctly predict the experimental results of light transmission or reflection by mesoscale optical structures, and that, for reliable analyses, a hybrid approach incorporating both geometric and wave optic theories should be employed. By analyzing the transmission patterns generated by the mesoscale periodic pyramid prism plates, we show that the wave optic feature is mainly ascribed to the edge diffraction effect and we estimate the relative contributions of the wave optic diffraction effect and the geometric refraction effect to the total scattering field distribution with respect to the relative dimension of the structures.

Maximising the lateral resolution of near-surface seismic refraction methods (천부 탄성파 굴절법 자료의 수평 분해능 최대화 연구)

  • Palmer, Derecke
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.85-98
    • /
    • 2009
  • The tau-p inversion algorithm is widely employed to generate starting models with most computer programs, which implement refraction tomography. This algorithm emphasises the vertical resolution of many layers, and as a result, it frequently fails to detect even large lateral variations in seismic velocities, such as the decreases which are indicative of shear zones. This study demonstrates the failure of the tau-p inversion algorithm to detect or define a major shear zone which is 50m or 10 stations wide. Furthermore, the majority of refraction tomography programs parameterise the seismic velocities within each layer with vertical velocity gradients. By contrast, the Generalized Reciprocal Method (GRM) inversion algorithms emphasise the lateral resolution of individual layers. This study demonstrates the successful detection and definition of the 50m wide shear zone with the GRM inversion algorithms. The existence of the shear zone is confirmed by a 2D analysis of the head wave amplitudes and by numerous closely spaced orthogonal seismic profiles carried out as part of a later 3D refraction investigation. Furthermore, an analysis of the shot record amplitudes indicates that a reversal in the seismic velocities, rather than vertical velocity gradients, occurs in the weathered layers. The major conclusion reached in this study is that while all seismic refraction operations should aim to provide as accurate depth estimates as is practical, those which emphasise the lateral resolution of individual layers generate more useful results for geotechnical and environmental applications. The advantages of the improved lateral resolution are obtained with 2D traverses in which the structural features can be recognised from the magnitudes of the variations in the seismic velocities. Furthermore, the spatial patterns obtained with 3D investigations facilitate the recognition of structural features such as faults which do not display any intrinsic variation or 'signature' in seismic velocities.

Variation of Harbor Response due to Construction of A New Port in Youngil Bay (영일만 신항 건설에 따른 항만 정온도의 변화)

  • Lee, Hoon;Lee, Hak-Seung;Yang, Sang-Yong;Lee, Joong-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.179-186
    • /
    • 2004
  • Introduction of wave model, considered the effect of shoaling, refraction, diffraction, partial reflection, bottom friction, breaking at the coastal waters of complex bathymetry, is a very important factor for most coastal engineering design and disaster prevention problems. As waves move from deeper waters to shallow coastal waters, the fundamental wave parameters will change and the wave energy is redistributed along wave crests due to the depth variation, the presence of islands, coastal protection structures, irregularities of the enclosing shore boundaries, and other geological features. Moreover, waves undergo severe change inside the surf zone where wave breaking occurs and in the regions where reflected waves from coastline and structural boundaries interact with the incident waves. Therefore, the application of mild-slope equation model in this field would help for understanding of wave transformation mechanism where many other models could not deal with up to now. The purpose of this study is to form a extended mild-slope equation wave model and make comparison and analysis on variation of harbor responses in the vicinities of Pohang Old Harbor and Pohang New Port, etc. due to construction of New Port in Youngil Bay. This type of trial might be a milestone for port development in macroscale, where the induced impact analysis in the existing port due to the developemnt could be easily neglected.

  • PDF

Interpretation of Geophysical and Engineering Geology Data from a Test Site for Geological Field Trip in Jeungpyung, Chungbuk (충북 증평 지질학습장 시험부지에 대한 물리탐사 및 지질공학 자료의 해석)

  • Kim, Kwan-Soo;Yun, Hyun-Seok;Sa, Jin-Hyeon;Seo, Yong-Seok;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.339-352
    • /
    • 2016
  • The best way of investigating the physical and mechanical properties of subsurface materials is the combined interpretation of data from borehole geophysical surveys and geotechnical experiments with rock samples. In this study two surface seismic surveys with refraction and surface-wave method are alternatively conducted for downhole seismic surveys in test site for geological field trip in Jeungpyung, Chungbuk. P- and S-wave velocity structures are delineated by refraction and MASW (multichannel analysis of shear waves) methods, respectively. Possion's ratio section, reconstructed from P- and S-wave velocities, is correlated to the outcrop geological features consisting of reddish sedimentary rock, gray volcanic rock, and joints/fractures. In addition, rock samples representative for reddish sedimentary and gray volcanic features are geotechnically analyzed to provide physical, mechanical properties, and elastic modulus. Dynamic elastic moduli estimated from geophysical data is found to be higher than the one from geotechnical data. Reddish sedimentary rock characterized with low porosity and moisture content corresponds to the zone of low electrical resistivities and their small variations in the resistivity sections between the rainy and dry days. This trend suggests that the weathered gray volcanic rock and the nearby fractures with higher low porosity and moisture content are interpreted to be good carrier especially in rainy season.

Characteristics of Wave Trasnformation in Gamcheon Harbor (감천항내의 파랑변형 특성)

  • 김재중;김기철;이정만
    • Journal of Korean Port Research
    • /
    • v.13 no.2
    • /
    • pp.399-408
    • /
    • 1999
  • Copeland’s(1985) hyperbolic mild-slope equation including diffraction refraction and reflection in the wave field is used as a governing equation in this study. The result of Maruyama & Kajima(1985) is used to calculate wave direction and that of Watanabe & Maruyama(1986) is used as a energy dissipation formula. Numerical solutions are obtained by the Leap-Frog scheme and compared with Watanabe & Maruyama’s (1984) hydraulic experimental results and numerical simulation results for the detached breakwater. This wave model is applied to a detached breakwater and compared with Watanabe and Maruyama’s (1984) hydraulic model results to check the characteristics of reflected wave field around a detached breakwater. The distribution of wave height and we phase in front of a detached breakwater is more accurate than the Watanabe and Maruyama’s numerical results. The results from our wave model show good agreements with the others and also show nonlinear effects around the detached breakwater. This model is applied to the Gamcheon harbor of pusan. the field observations were carried out at Pusan harbor wave station in 1986-1995 and the results were accepted as a design wave condition in this study. The wave height and wave period was measured by Dong-A university at one station in the Gamcheon harbor in 1996-1997 and used as a calibration criterion. The measured data were used as input data for the numerical simulation and also compared with simulated results. The numerical simulation shows a fairly good results which considering the effect of topographic characteristics and effect of narrow entrance due to two separated breakwaters in Gamcheon harbor. The wave distribution characteristics inside Gamcheon harbor is quite different with the offshore wave direction and wave period.

  • PDF

A Study on the Dynamic Characteristics of on-shore Ground Using Suspension P. S. Logging (서스펜션 P.S. 검층을 이용한 해저 지반의 동역학적 특성에 관한 연구)

  • 김용수;정승용;장찬수;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.357-364
    • /
    • 1999
  • In recently site investigations, the need for the determination of dynamic soil properties such as dynamic modules of rigidity, elasticity, dynamic poison's ratio and damping ratio etc. is increasing for the astigmatic designs of the civil structures. To obtain some of the dynamic properties, measurement of elastic waves velocity, both P and S wave, is required. Among various methods to measure elastic wave velocity such and Down Hole, Cross Hole and Refraction etc., Suspension P.S. Logging has an advantage to use for the off-shore investigation where generation of the shock wave and traveling of the wave is difficult. In suspension P.S. logging, specially designed prove equipped with source of shock wave, two 3-channel receivers, departing 1m distance, and other auxiliary facilities is inserted down in a bore hole bottom and raised in predetermined interval, usually 1m or 2m, and measurement is conducted. P.S. logging have been conducted in a off-shore construction project near InChon in the west coast for the first in the country, and form the result, potential of the liquefaction of the subsoil was evaluated and compared with the conventional method.

  • PDF

The Defect Detection and Evaluation of Austenitic Stainless Steel 304 Weld Zone using Ultrasonic Wave and Neuro (초음파와 신경망을 이용한 오스테나이트계 스테인리스강 304 용접부의 결함 검출 및 평가)

  • Yi, Won;Yun, In-Sik
    • Journal of Welding and Joining
    • /
    • v.16 no.3
    • /
    • pp.64-73
    • /
    • 1998
  • This paper is concerned with defects detection and evaluation of heat affected zone (HAZ) in austenitic stainless steel type 304 by ultrasonic wave and neural network. In experiment, the reflected ultrasonic defect signals from artificial defects (side hole, vertical hole, notch) of HAZ appears as beam distance of prove-defect, distance of probe-surface, depth of defect-surface on CRT. For defect classification simulation, neural network system was organized using total results of ultrasonic experiment. The organized neural network system was learned with the accuracy of 99%. Also it could be classified with the accuracy of 80% in side hole, and 100% in vertical hole, 90% in notch about ultrasonic pattern recognition. Simulation results of neural network agree fairly well with results of ultrasonic experiment. Thus were think that the constructed system (ultrasonic wave - neural network) in this work is useful for defects dection and classification such as holes and notches in HAZ of austenitic stainless steel 304.

  • PDF

Seismic exploration for understanding the subsurface condition of the Ilwall-dong housing construction site in Pohang-city, Kyongbook (경북 포항시 일월동 택지개발지구의 지반상태 파악을 위한 탄성파탐사)

  • Seo, Man Cheol
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.1
    • /
    • pp.45-56
    • /
    • 1999
  • Seismic refracrion and reflection surveys were conducted along an E-W trending track of 482 m long in Ilwall-dong, Pohang. End-on spread was employed as source-receiver configuration with 2 m for both geophone interval and offset. Seismic data were acquired using 24 channels at every shot fired every 2 m along the track. Refraction data were interpreted using equations for multi-horizontal layers. Reflection data were processed in the sequence of trace edit, gain control, CMP sorting, NMO correction, mute, common offset gathering, and filtering to produce a single fold seismic section. There are two layers in shallow subsurface of the study area. Upper layer has the P-wave velocities ranging from 267 to 566 m/s and is interpreted as a layer of unconsolidated sediments. Lower layer has P-wave velocities of 1096-3108 m/s and is interpreted as weathered rock to hard rock. Most of the lower layer classified as soft rock. Upper layer has lateral variations in both P-wave velocity and thickness. The upper layer in the eastern part of the seismic line is 3-5 m thick and has P-wave velocity of 400 m/s in average. The upper layer in the western part is 8-10 m thick and has P-wave velocity of 340 m/s in average. The eastern part is interpreted as unconsolidated beach sand, while the western part is interpreted as infilled soil to develop a construction site. Three fault systems of high angle are imaged in seismic reflection section. It is interpreted that the area between these fault systems are relatively safe. Large buildings should be located in the safe ground condition of no fault and footings should be designed to be in the basement rock of 3-10 m deep below the surface.

  • PDF

Development of 3-D Nonlinear Wave Driver Using SPH (SPH을 활용한 3차원 비선형 파랑모형 개발)

  • Cho, Yong Jun;Kim, Gweon Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.559-573
    • /
    • 2008
  • In this study, we newly proposed 3-D nonlinear wave driver utilizing the Navier-Stokes Eq. the numerical integration of which is carried out using SPH (Smoothed Particle Hydrodynamics), an internal wave generation with the source function of Gaussian distribution and an energy absorbing layer. For the verification of new 3-D nonlinear wave driver, we numerically simulate the sloshing problem within a parabolic water basin triggered by a Gaussian hump and uniformly inclined water surface by Thacker (1981). It turns out that the qualitative behavior of sloshing caused by relaxing the external force which makes a free surface convex or uniformly inclined is successfully simulated even though phase error is visible and an inundation height shrinks as numerical simulation more proceeds. For the more severe test, we also simulate the nonlinear shoaling and refraction over uniform beach of wedge shape. It is shown that numerically simulated waves are less refracted than the linear counterpart by Hamiltonian ray theory due to nonlinearity, energy dissipation at the bottom and side walls, energy loss induced by breaking, and the hydraulic jump occurring when breaking waves encounter a down-rush by the preceding wave.

Soil and structure uncertainty effects on the Soil Foundation Structure dynamic response

  • Guellil, Mohamed Elhebib;Harichane, Zamila;Berkane, Hakima Djilali;Sadouk, Amina
    • Earthquakes and Structures
    • /
    • v.12 no.2
    • /
    • pp.153-163
    • /
    • 2017
  • The underlying goal of the present paper is to investigate soil and structural uncertainties on impedance functions and structural response of soil-shallow foundation-structure (SSFS) system using Monte Carlo simulations. The impedance functions of a rigid massless circular foundation resting on the surface of a random soil layer underlain by a homogeneous half-space are obtained using 1-D wave propagation in cones with reflection and refraction occurring at the layer-basement interface and free surface. Firstly, two distribution functions (lognormal and gamma) were used to generate random numbers of soil parameters (layer's thickness and shear wave velocity) for both horizontal and rocking modes of vibration with coefficients of variation ranging between 5 and 20%, for each distribution and each parameter. Secondly, the influence of uncertainties of soil parameters (layer's thickness, and shear wave velocity), as well as structural parameters (height of the superstructure, and radius of the foundation) on the response of the coupled system using lognormal distribution was investigated. This study illustrated that uncertainties on soil and structure properties, especially shear wave velocity and thickness of the layer, height of the structure and the foundation radius significantly affect the impedance functions, and in same time the response of the coupled system.