• Title/Summary/Keyword: Wave Propagation

Search Result 1,998, Processing Time 0.028 seconds

An analysis of elastic wave propagation in inhomogeneous solids using the Fourier method (Fourier 방법을 이용한 불균일 고체의 탄성파전달해석)

  • 김현실
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06c
    • /
    • pp.327-330
    • /
    • 1998
  • Wave propagation in inhomogeneous elastic media is studied by using the Fourier method, where the spatial derivatives are computed by the FFT algorithm, while the time derivatives are expanded into the second order finite different expansion. For numerical examples, wave propagation in the layered half-plane are investigated. The comparisons of numerical and analytic results shows good agreement.

  • PDF

EMW Propagation Characteristics in Waveguides Loaded with Gyromagnetic Materials (회전자성체내에서의 전자파 전파특성)

  • Hyung Joo Woo
    • 전기의세계
    • /
    • v.25 no.1
    • /
    • pp.101-103
    • /
    • 1976
  • Recently there exist many reports about the results of the theoretical analysis on the influence of screw symmetry structure to the characteristics of EMW propagation in the cylindrical wave-guides loaded with ferrite and, in this paper, an attempt is mode to analyze applying symmetry analysis the wave propagation characteristics in the dual turnstile structure. And one of the results obtained is the values of wave vectors become, in general, different according to the orientation of the geometry in the case of the dual turnstile structure.

  • PDF

Residual Stress Measurement by L$_{CR}$ Wave and Acoustic Emission Characteristics from Fatigue Crack Propagation in STS316L Weldment (STS316L용접재의 표면파에 의한 잔류응력 측정과 균열진전시의 음향방출특성)

  • 남기우;박소순;안석환
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.47-54
    • /
    • 2003
  • In this study, the residual stress and the acoustic emission Charactreistics from fatigue crack propagation were investigated, bused on the welded material of STS316L. The residual stress of welding locations could be evaluated by ultrasonic parameters, such as L$_{CR}$ wave velocity and L$_{CR}$ wave frequency; the residual stress between base metal and weld metal was evaluated. In the fatigue tests, three types of signals were observed, regardless of specimen condition, base metal, and weld metal. Based on NDE analysis of AE signals by the time-frequency analysis method, it should also be possible to evaluate, in real-time, the crack propagation and final fracture process, resulting from various damages and defects in welded structural members.

The Impact Stresses and Wave Propagation of Laminated Composites

  • Ahn, Kook Chan;Kim, Doo Hwan;Lee, Gwang Seok
    • International Journal of Safety
    • /
    • v.1 no.1
    • /
    • pp.7-12
    • /
    • 2002
  • This paper demonstrates the impact stresses and wave propagation characteristics of glass/epoxy laminates subjected to the low-velocity impact by a steel ball theoretically and experimentally. A plate finite element model in conjunction with experimental contact laws is used for the theoretical investigation. The specimens for statical indentation and impact test are composed of $[0/45/0/-45/0]_28 and [90/45/90/-45/90]_28$ stacking sequences and have clamped-simply supported boundary conditions. Finally, these two results are compared and then the impulsive stress and wave propagation characteristics of this laminated composite are studied.

Analysis of Electromagnetic Wave Propagation from 2 Dimensional Random Rough Surfaces (2차원 불규칙 조면에서의 전자파 전파 해석)

  • Yoon, Kwang-Yeol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1114-1119
    • /
    • 2010
  • This paper is concerned with an numerical analysis of electromagnetic wave propagation from randomly rough surfaces as a desert, sea surface and so on. We propose discrete ray tracing method (DRTM) for analysis of characteristics of wave propagation along one dimensional (1D) and two dimensional (2D) random rough surfaces. The point of the present method is to discretize not only rough surface but also ray tracing. This technique helps saving computer memories and does simplifying ray searching algorithm resulting in saving computation time. Numerical calculations are carried out for 1D and 2D random rough surfaces and electric field distributions are shown to check the effectiveness of the proposed DRTM.

The Propagation Characteristics of the Pressure in the Volume Loaded Fluid Transmission Line (체적부하를 갖는 유체 전달관로의 압력전파 특성)

  • 윤선주;손병진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.3075-3083
    • /
    • 1994
  • The applications of the electrical transmission line theory to the pressure propagation characteristics in the volume loaded fluid transmission line with step and impulse input wave is demonstrated in this paper. The method is based on the premise that the time response is the inverse Fourier transform of frequency spectrum of the wave which spectrum is a product of frequency spectrum of input pressure wave and system transfer function. The frequency response and transient response of step and impulse input wave in the volume loaded fluid transmission line is analysed by the Laplace transform and inverse Laplace transform with FFT numerical algorithm. The numerical solution of the distributed friction model is compared with the average friction model and the infinite product model. And the result is showed that FFT method may have major advantages for the simulation of fluid circuitary.

Wave Propagation Characteristics along a Catenary with Arbitrary Boundary Conditions (임의의 경계조건을 갖는 가선계의 파동 현상에 대한 고찰)

  • 김양한;박연규;김시문;노현석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2059-2071
    • /
    • 1992
  • The characteristics of wave propagation along a catenary in rail electrification system depend on the boundary impedance, characteristic impedance of catenary, and the contact force of pantograph moving along the catenary. In this study, the wave propagation along catenary is studied with arbitrary boundary conditions and characteristic impedance of catenary. The reflection and transmission of waves through the boundaries of catenary and the propagation of waves along the catenary are found to be dependent on the wave length.

Wave Propagation Characteristics along a Simple Catenary with Arbitrary Impedance Condition (임의의 임피던스를 갖는 단순현가방식 가선계의 파동현상)

  • Park, Sukyung;Kim, Seamoon;Kim, Yang-Hann
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3463-3473
    • /
    • 1996
  • The characteristics of wave propagation along a catenary depend on various impedance conditions; i.e., spatial impedance of catenary, impedance of boundaries. In this study, wave propagation along a simple catenary system is studied with arbitrary impedance conditions such as impedance of pantograph, boundary, catenary etc. Seven coupled equations which determine the characteristics of wave propagation along catenary system have been derived and numerically solved. Results demonstrate the role of each impedance condition in the dynamics of catenary system, i.e. the way in which the conditions affect waves on catenary as well as contact force of pantograph. The formulation and suggested solution method can be certainly used for desinging an optimal catenary system for a given pantograph.

Wave Propagation of Composite Materials Subjected to Dynamic Load (동하중을 받는 복합재의 파동전파에 관한 연구)

  • Ahn, Kook-Chan;Jeong, In-Jo;Jung, Dae-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.138-146
    • /
    • 2012
  • This research is to analyze the wave propagation characteristics of anisotropic materials subjected to the low-velocity impact. For this purpose, a higher-order finite element program is used to simulate the dynamic behaviors according to the changes of material property, stacking sequence and dimension etc.. Materials for simulation are composed of $[0^{\circ}]_{10s}$, $[45^{\circ}/-45^{\circ}]_{5s}$ and $[90^{\circ}]_{10s}$ stacking sequences. Finally, the results of this simulation are compared with those of wave propagation theory and then the impact responses and wave propagation phenomena are investigated.

Wave propagation of a functionally graded beam in thermal environments

  • Akbas, Seref Doguscan
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1421-1447
    • /
    • 2015
  • In this paper, the effect of material-temperature dependent on the wave propagation of a cantilever beam composed of functionally graded material (FGM) under the effect of an impact force is investigated. The beam is excited by a transverse triangular force impulse modulated by a harmonic motion. Material properties of the beam are temperature-dependent and change in the thickness direction. The Kelvin-Voigt model for the material of the beam is used. The considered problem is investigated within the Euler-Bernoulli beam theory by using energy based finite element method. The system of equations of motion is derived by using Lagrange's equations. The obtained system of linear differential equations is reduced to a linear algebraic equation system and solved in the time domain and frequency domain by using Newmark average acceleration method. In order to establish the accuracy of the present formulation and results, the comparison study is performed with the published results available in the literature. Good agreement is observed. In the study, the effects of material distributions and temperature rising on the wave propagation of the FGM beam are investigated in detail.