• Title/Summary/Keyword: Wave Parameters

Search Result 1,611, Processing Time 0.027 seconds

Separation of Linear and Elliptic Particle Motions Using Multi-Component Complex Trace Analysis (다성분 복소트레이스 분석법에 기초한 선형 및 타원형 입자운동 분리)

  • Kim, Ki-Young;Lee, So-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.3
    • /
    • pp.246-254
    • /
    • 2009
  • We developed a novel polarization filter to separate linearly polarized waves from elliptically polarized waves in an infinite homogeneous medium and at the free surface using methods of multicomponent complex trace analysis. Sensitivity to filter parameters were examined using synthetic data simulating particle motions in a homogeneous medium. For known amplitude ratios of horizontal-to-vertical components of P and Rayleigh waves $C_L$ and $C_R$, respectively, the polarization filter precisely removes Rayleigh waves. Errors in the vertical and horizontal components of the filtered results increase with the ratio $C_R$/$C_L$ and the product $C_R$.$C_L$, respectively. The vertical component errors also increase rapidly as the ratios of applied-to-modeled values of $C_L$ and $C_R$ ($C_L'$/$C_L$ and $C_R'$/$C_R$) decrease, and are sensitive to $C_R'$/$C_R$ and $C_L'$/$C_L$ for small and large incidence angles, respectively. Errors of the filter are exactly the same for shear waves when the incidence angle is the supplementary of P-wave incidence angle.

Design of Double-Dipole Quasi-Yagi Antenna with 7 dBi gain (7 dBi 이득을 가지는 이중 다이폴 준-야기 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig;Baek, Woon-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.245-252
    • /
    • 2016
  • In this paper, the design of a double-dipole quasi-Yagi antenna (DDQYA) with a gain over 7 dBi at 1.70-2.70 GHz band is studied. The proposed DDQYA consists of two strip dipoles with different lengths and a ground reflector, which are connected trough a coplanar stripline. The length of the second dipole is adjusted to increase the gain in the low frequency band, whereas a rectangular patch director is appended to the DDQYA to enhance the gain in the middle and high frequency band. The effects of the length of the second dipole, and the length and width of the director on the antenna performance are analyzed, and final design parameters to obtain a gain over 7 dBi are obtained. A prototype of the proposed DDQYA is fabricated on an FR4 substrate, and the experimental results show that the antenna has a frequency band of 1.60-2.86 GHz for a VSWR < 2, and measured gain ranges 7.2-7.6 dBi at 1.70-2.70 GHz band.

Typical Seismic Intensity Calculation for Each Region Using Site Response Analysis (부지응답해석을 이용한 지역별 대표 진도 산출 연구)

  • Ahn, Jae-Kwang;Son, Su-Won
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.1
    • /
    • pp.5-12
    • /
    • 2020
  • Vibration propagated from seismic sources has damping according to distance and amplification and reduction characteristic in different regions according to topography and geological structure. The vibration propagated from the seismic source to the bedrock is largely affected by the damping according to the separation distance, which can be simply estimated through the damping equation. However, it is important to grasp geological information by location because vibration estimation transmitted to the surface are affected by the natural period of the soil located above the bedrock. Geotechnical investigation data are needed to estimate the seismic intensity based on geological information. If there is no Vs profile, the standard penetration tests are mainly used to determine the soil parameters. The Integrated DB Center of National Geotechnical Information manages the geotechnical survey data performed on the domestic ground, and there is the standard penetration test information of 400,000 holes. In this study, the possibility of quantitation the amplification coefficient for each region was examined to calculated the physical interactive seismic intensity based on geotechnical information. At this time, the shear wave column diagram was generated from the SPT-N value and ground response analysis was performed in the target area. The site coefficients for each zone and the seismic intensity distribution for the seismic motion present a significant difference according to the analysis method and the regional setting.

Weldability with Process Parameters During Fiber Laser Welding of a Titanium Plate (I) - Effect of Type and Flow Rate of Shielding Gases on Weldability - (티타늄 판재의 파이버 레이저 용접시 공정변수에 따른 용접특성 (I) - 실드가스 종류 및 유량에 따른 영향 -)

  • Kim, Jong Do;Kim, Ji Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.12
    • /
    • pp.1047-1053
    • /
    • 2016
  • In this study, welding of pure titanium was carried out by using a continuous wave fiber laser with a maximum output of 6.3 kW. Because brittle regions form easily in titanium as a result of oxidation or nitriding, the weld must be protected from the atmosphere by using an appropriate shielding gas. Experiments were performed by changing the type and the flow rate of shielding gases to obtain the optimal shielding condition, and the weldability was then evaluated. The degree of oxidation and nitriding was distinguished by observing the color of beads, and weld microstructure was observed by using an optical microscope and a scanning electron microscope. The mechanical properties of the weld were examined by measuring hardness. When the weld was oxidized or nitrified, the bead color was gray or yellow, and the oxygen or nitrogen content in the bead surface and overall weld tended to be high, as a result of which the hardness of the weld was thrice that of the base metal. A sound silvery white bead was obtained by using Ar as the shielding gas.

An Experimental study to estimate physical properties of porous media by a permittivity method (유전율법에 따른 다공질 매질의 특성 파악을 위한 실험적 연구)

  • 김만일;니시가끼마코토
    • The Journal of Engineering Geology
    • /
    • v.13 no.4
    • /
    • pp.405-418
    • /
    • 2003
  • Measurements of volumetric water content and saturation of porous media are very important factors in understanding the physical characteristics of soil, groundwater recharge by rainfall, pollutant movement, and slope failure. To measure such physical parameters, a permittivity method using electromagnetic wave is applied and use is made of the special permittivity response of understand to water and ethanol. In particular, the estimation is required because permittivity is influenced by the nature of the underground environment. In this study, we carried out experiments on the relative dependency of soil density, temperature and salinity of standard sand and granitic weathered soil using FDR-V system (Frequency domain reflectometry with vector network analyzer) within a frequency range of 1 - 18 GHz. The results of the study showed that the dielectric constants of standard sand and granitic weathered soil increased with increased volumetric water content of soil. However, the dependency of soil density was found to be a little low. Changes of dielectric constant with temperature appeared definitely in the real part of 1 GHz. That is, the dielectric constant of real part at 1 GHz of water and standard sand increased with the rise of temperature. However, ethanol showed decreased tendency. The study also showed that dielectric constant increased with increase in salinity at imaginary part of 1 GHz. It could be concluded from this study FDR-V system can adequately measure the physical properties of soil and the degree of salinity concentration of porous media within 1 GHz frequency range using dielectric constant.

Effects of Vibration Stimulation Method on Upper Limbs Spasticity in Patients with Brain Lesion (진동자극 방식이 뇌병변 환자의 상지경직에 미치는 영향)

  • Bae, Sea-Hyun;Kim, Kyung-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.3109-3116
    • /
    • 2011
  • We studied the effects of vibration stimulation method on upper limbs spasticity in patients with brain lesion. 21 patients with spasticity of the upper limbs selected and divided randomly 3 groups. And then vibratory stimulation was applied to the triceps brachii muscle in group I(n=7), to biceps brachii muscle in group II (n=7), and to both muscles in group III (n=7). Using Neuro-EMG_Micro to investigate the changes in spinal neuronal excitability, F-waves were measured at before and directly after stimulation, and 10 minutes later and 20 minutes later after stimulation especially. MAS(Modified Ashworth Scale) test for muscle tone and MFT(Manual Function Test) for the upper extremity motor function were performed before stimulation and 20 minutes later after stimulation for the purpose of clinical evaluation. In our study, MAS was significant decreased in all groups, F wave and F/M ratio parameters were decreased in all groups and more decreased specially in group III. MFT was increased in group II and III, and more increased specially in group III. Vibration stimulation reduced the neuronal excitability of spinal cord and also muscle tone, and improved the motor function of the upper extremity. These results suggested that vibration stimulation giving to both muscles(triceps and biceps brachii muscle) at the same time was more efficiency in reducing the neuronal excitability of spinal cord and improving the motor function of the upper limbs.

Study of Rip Current Warning Index Function Varied according to Real-time Observations (실시간 관측정보에 따른 이안류 경보 지수함수 연구)

  • Choi, Junwoo;Lim, Chae Ho;Yoon, Sung Bum
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.5
    • /
    • pp.477-490
    • /
    • 2013
  • A rip-current warning index function, which is estimated from the likelihood of rip current quantified based on numerical simulations under various sea environments and is varied according to real-time buoy-observations, was studied to help protect against rip current accidents at Haeundae beach. For the quantification, the definition of likelihood of rip current, which proposed by Choi et al. (2011, 2012b), was employed and estimated based on Boussinesq modelling. The distribution of likelihood of rip current was evaluated by using various simulations according to scenarios established based on physical quantities(i.e., wave parameters) of buoy-observations. To index the likelihood of rip current, empirical functions were derived based on the distribution and adjusted to observational environments. In this study, the observations from June to September in 2011 at Haeundae beach were applied to the rip-current index functions, and its applications into the real events found based on CCTV images were presented and investigated. In addition, limitations and improvements of the rip-current index function were discussed.

Probabilistic Medium- and Long-Term Reservoir Inflow Forecasts (I) Long-Term Runoff Analysis (확률론적 중장기 댐 유입량 예측 (I) 장기유출 해석)

  • Bae, Deg-Hyo;Kim, Jin-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.3 s.164
    • /
    • pp.261-274
    • /
    • 2006
  • This study performs a daily long-term runoff analysis for 30 years to forecast medium- and long-term probabilistic reservoir inflows on the Soyang River basin. Snowmelt is computed by Anderson's temperature index snowmelt model and potenetial evaporation is estimated by Penman-combination method to produce input data for a rainfall-runoff model. A semi-distributed TOPMODEL which is composed of hydrologic rainfall-runoff process on the headwater-catchment scale based on the original TOPMODEL and a hydraulic flow routing model to route the catchment outflows using by kinematic wave scheme is used in this study It can be observed that the time variations of the computed snowmelt and potential evaporation are well agreed with indirect observed data such as maximum snow depth and small pan evaporation. Model parameters are calibrated with low-flow(1979), medium-flow(1999), and high-flow(1990) rainfall-runoff events. In the model evaluation, relative volumetric error and correlation coefficient between observed and computed flows are computed to 5.64% and 0.91, respectively. Also, the relative volumetric errors decrease to 17% and 4% during March and April with or without the snowmelt model. It is concluded that the semi-distributed TOPMODEL has well performance and the snowmelt effects for the long-term runoff computation are important on the study area.

Application of an Unsteady River Water Quality Model for the Analysis of Reservoir Flushing Effect on Downstream Water Quality (저수지 플러싱 방류 효과분석을 위한 비정상상태 하천수질모형의 적용)

  • Chung, Se-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.10
    • /
    • pp.857-868
    • /
    • 2004
  • Since the self-purification capacity of rivers in Korea is significantly controlled by environmental maintenance flow supplied by upstream reservoirs during drought season, it is obviously important to operate the river and reservoir systems considering not only water quantity aspect but also conservation of downstream water quality and ecosystem. In this study, an unsteady river water quality model KORIVl- WIN was developed as a tool for evaluating the impact. of reservoir operations on the downstream water quality. The model parameters were calibrated and verified using field data obtained in Geum River on September and October of 2002, respectively. Intensive data sampling was performed on November 22, 2003 to investigate the effect of a short-term flushing discharge of Daecheong Reservoir, which increased outflow from 30 $m^3$/s to 200 $m^3$/s for 6 hours, on downstream water quality. The model performance was evaluated by comparing simulated results with observed data including hydraulics, biochemical oxygen demand(BOD$_{5}$), nitrogen and phosphorus species during the flushing event. It showed very good performance in predicting the travel time of flushing flow and water quality variations of dissolved forms of nitrogen and phosphorus species, while revealed large deviations for BOD$_{5}$ possibly due to missing the effect of organic matters resuspension from river bottom sediment during the wave front passage.

Clinical Features of Electrogastrogram in Dyspeptic Patients with Stomach Qi Deficiency (위기허증으로 진단된 소화불량 환자의 임상적 특징; 위전도 검사를 중심으로)

  • Jeong, Hae-in;Kim, Dong-yoon;Baek, So-young;Lee, Ha-nul;Lee, Hyun-jin;Cho, Yun-jae;Ha, Na-yeon;Kim, Jin-sung
    • The Journal of Internal Korean Medicine
    • /
    • v.41 no.3
    • /
    • pp.467-477
    • /
    • 2020
  • Objectives: This study investigated the cutaneous electrogastrogram (EGG) and other clinical characteristics of dyspeptic patients who have been diagnosed with Stomach Qi Deficiency (SQD) using the Scale for Stomach Qi Deficiency (SSQD). Methods: This study reviewed the clinical records of 38 patients with dyspepsia who were evaluated with SSQD and EGG at the Department of Digestive Diseases of Kyung Hee University Korean Medicine Hospital in Seoul, Korea from November 1, 2019 to February 29, 2020. We evaluated the EGG and other clinical characteristics of the SQD patients to determine if there was an association between the SSQD scores and the EGG. Results: In terms of the EGG, the SQD patients showed no significant increase in the percentage of normal slow wave after a meal and a slightly decreased power ratio at Channel 1 and Channel 2. We also found an association between the SSQD scores and the EGG parameters at Channel 1 and Channel 3. The average Ryodoraku score of the patients was 33.00±14.90 (μA). In the Heart Rate Variability (HRV) test, the average Total Power (TP) and Low Frequency/High Frequency (LF/HF)) ratio was 1356.60±13 6.41(ms2) and 1.68±2.25, respectively. Conclusions: The results of this study suggest that clinicians can use Electrogastrography to enhance accuracy when diagnosing the SQD pattern.