• 제목/요약/키워드: Wave Model

검색결과 4,186건 처리시간 0.031초

불규칙파의 유공 케이슨 방파제로부터의 반사율 산정시 규칙파 모델 적용 (Application of a Regular Wave Model to Calculation of Irregular Wave Reflection from Perforated-Wall Caisson Breakwaters)

  • 서경덕;손상영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.205-208
    • /
    • 2002
  • Numerous studies have been performed to develop an analytical model that can predict the reflection of regular or irregular waves from a perforated-wall caisson breakwater. Though such irregular wave models as Suh et at. (2001) become available, regular wave models are still in extensive use because of their simplicity. In the present study, using the regular wave model of Fuggazza and Natale(1992), the reflection of irregular waves from a perforated-wall caisson breakwater was calculated in several different methods. First, the regular wave model was re-validated by the hydraulic model tests. Though the model somewhat over-predicted the reflection coefficients at larger values and under-predicted them at smaller values, overall agreement was pretty good between calculation and measurement. Then, the regular wave model was applied to calculate the irregular wave reflection in the experiments of Suh et at.(2001) and Bennett et al. (1992). In applying the regular wave model to irregular wave reflection, several different methods were used. The results showed that it is the most reasonable to use the regular wave model repeatedly for each frequency component of the irregular wave specuum with the root-mean-squared wave height for all the frequencies .

  • PDF

A Practical Application of Multiple Wave Models to the Small Fishery Harbor Entrance

  • Jung, Jae-Hyun;Lee, Joong-Woo;Jeon, Min-Su;Kang, Seok-Jin
    • 한국항해항만학회지
    • /
    • 제31권7호
    • /
    • pp.579-587
    • /
    • 2007
  • Samchunpo(Sin Hyang) Harbor is located in the bay of Sa Chun, the central south coast of Korean peninsula. The harbor and coastal boundaries have been protecting by natural coastal islands and shoals. Currently, The Sin Hyang harbor needs maintenance and renovation of the sheltered structures against the weather deterioration and typhoon damages. Consequently to support this, the calculation of accurate design wave through the typhoon wave attack is necessary. In this study, calculation of incident wave condition is simulated using steady state spectrum energy wave model(wide area wave model) from 50 years return wave condition. And this simulation results in wide offshore area were used for the input of the extended mild slope wave model at the narrow coastal area. Finally, the calculation of design wave at Sin Hyang harbor entrance was induced by Boussinesq wave model(detail area wave model) simulation. The numerical model system was able to simulate wave transformations from generation scale to shoreline or harbor impact. We hope these results will be helpful to the engineers doing placement, design, orientation, and evaluation of a wide range of potential solutions in this area.

파랑변형 모형의 예측에 관한 연구 (A Study on the Prediction of Wave Deformation Model)

  • 옥치율;민일규
    • 한국해양공학회지
    • /
    • 제9권2호
    • /
    • pp.41-52
    • /
    • 1995
  • the necessity of development of the Nearshore zone greatly emphasis in recent years. In the wave deformation model, we can get the wave height and wave direction using the hyperbolic mild slope equation considered the reflection wave. Radiation Stress the driving force of flow was calculated by the Watanabe and Maruyama who proposed on the partial standing wave. In the surf zone, applying the Izumiya and Horikawa's turbulent model considered the bottom friction and energy dissipation, we compared and examined with the Numerical model and Hydraulic test result of Watanabe and Maruyama. This model results obtained for Jin-ha Beach agreed well with the Numerical results. This model is expected so helpful to solve the prediction of the wave deformation problems in the development of the Nearshore zone in the future.

  • PDF

쌍곡선형 파랑모형을 이용한 해빈류 예측 (Prediction of Wave-Induced Current Using Time-Dependent Wave Model)

  • 김재중;이정만
    • 한국항만학회지
    • /
    • 제12권2호
    • /
    • pp.269-280
    • /
    • 1998
  • A Wave-induced current model is developed in our study and this model is composed with wave transform model and current model. Two types of wave model are used in our study one is Copeland(1985) type which is applied in the offshore region and the other is Watanabe and Maruyama(1984) type which is applied in the surf zone. The depth-integrated and time-averaged governing equation of an unsteady nonlinear form is used in the wave induced current model. Lateral mixing radiation stresses surface and bottom stresses are considered in our current model. Copeland’s(1976) is used as a surface friction formula. Numerical solutions are obtained by Leendertse scheme and compared with Noda’s(1974) experimental results for the uniform slope coastal region test and Nishimura & Naruyama’s (1985) experimental results and numerical simulation results for the detached breakwater. The results from our wave model and wave model and wave-induced current model show good agreements with the others and also show nonlinear effects around the detached breakwater. The model in this study can be applied in the surf zone considering the friction stresses.

  • PDF

Inner harbour wave agitation using boussinesq wave model

  • Panigrahi, Jitendra K.;Padhy, C.P.;Murty, A.S.N.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권1호
    • /
    • pp.70-86
    • /
    • 2015
  • Short crested waves play an important role for planning and design of harbours. In this context a numerical simulation is carried out to evaluate wave tranquility inside a real harbour located in east coast of India. The annual offshore wave climate proximity to harbour site is established using Wave Model (WAM) hindcast wave data. The deep water waves are transformed to harbour front using a Near Shore spectral Wave model (NSW). A directional analysis is carried out to determine the probable incident wave directions towards the harbour. Most critical threshold wave height and wave period is chosen for normal operating conditions using exceedence probability analysis. Irregular random waves from various directions are generated confirming to Pierson Moskowitz spectrum at 20m water depth. Wave incident into inner harbor through harbor entrance is performed using Boussinesq Wave model (BW). Wave disturbance experienced inside the harbour and at various berths are analysed. The paper discusses the progresses took place in short wave modeling and it demonstrates application of wave climate for the evaluation of harbor tranquility using various types of wave models.

쌍곡선형 파랑모형을 이용한 해빈류 예측 (Prediction of Wave-Induced Current Using Time-Dependent Wave Model)

  • 이정만;김재중
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 1998년도 추계학술대회논문집:21세기에 대비한 지능형 통합항만관리
    • /
    • pp.189-199
    • /
    • 1998
  • Wave-induced current model is developed in our study and this model is composed with wave transform model and current model. Two types of wave model are used in our study, one is Copeland(1985) type which is applied in the offshore region and the other is Watanabe and Maruyama(1984) type which is applied in the surf zone. The depth-integrated and time-averaged governing equation of an unsteady nonlinear form is used in the wave induced current model. Lateral mising, radiation stresses, surface and bottom stresses are considered in our current model. Copeland's(1985) relult is used to calculate radiation stress and Berkmeir & Darlymple's(1976) is used as a surface friction formula. Numerical solutions are obtained by Leendertse scheme and compared with Noda's(1974) experimental results for the uniform slope coastal region test and Nishimura & Maruyama's(1985) experimental relults and numerical simulation results for the detached breakwater test. The results from our wave model show good agreement with the others and also show nonlinear effects around the detached breakwater. Wave induced current model is developed in this study and this model shows nonlinear effects around the detached breakwater and can be applied in the surf zone and also consider the friction stresses.

  • PDF

전지구·지역·국지연안 통합 파랑예측시스템 개발을 위한 여름철 태풍시기 풍파성장 파라미터 민감도 분석 (Sensitivity Analysis of Wind-Wave Growth Parameter during Typhoon Season in Summer for Developing an Integrated Global/Regional/Coastal Wave Prediction System)

  • 오유정;오상명;장필훈;강기룡;문일주
    • Ocean and Polar Research
    • /
    • 제43권3호
    • /
    • pp.179-192
    • /
    • 2021
  • In this study, an integrated wave model from global to coastal scales was developed to improve the operational wave prediction performance of the Korean Meteorological Administration (KMA). In this system, the wave model was upgraded to the WaveWatch III version 6.07 with the improved parameterization of the source term. Considering the increased resolution of the wind input field and the introduction of the high-performance KMA 5th Supercomputer, the spatial resolution of global and regional wave models has been doubled compared to the operational model. The physical processes and coefficients of the wave model were optimized for the current KMA global atmospheric forecasting system, the Korean Integrated Model (KIM), which is being operated since April 2020. Based on the sensitivity experiment results, the wind-wave growth parameter (βmax) for the global wave model was determined to be 1.33 with the lowest root mean square errors (RMSE). The value of βmax showed the lowest error when applied to regional/coastal wave models for the period of the typhoon season when strong winds occur. Applying the new system to the case of August 2020, the RMSE for the 48-hour significant wave height prediction was reduced by 13.4 to 17.7% compared to the existing KMA operating model. The new integrated wave prediction system plans to replace the KMA operating model after long-term verification.

점진적 충격파모형의 함축적 의미와 검산 (Implications and numerical application of the asymptotical shock wave model)

  • 조성길
    • 한국ITS학회 논문지
    • /
    • 제11권4호
    • /
    • pp.51-62
    • /
    • 2012
  • Lighthill과 Whitham의 충격파모형에 따르면 동일한 속도를 유지하는 교통류 흐름상태에서도 충격파가 존재하며, 이는 라디오 전파처럼 보이지도 않고 관측할 수도 없다고 하였다. 최근의 한 논문은 이 문제에 대해 새로운 접근방법을 통해 위와 같은 모순이 어떻게 발생하였는지를 보여주었고, 이를 개선하기 위해 점근적 충격파모형 (asymptotical shock wave model) 을 제시하였다. 점근적 충격파모형은 동일한 속도로 이동하는 균일한 교통류에서 라디오 전파와 같은 관측 불가능한 충격파가 존재하지 않는 것을 증명하였다. 그러나 상기 논문은 모형의 유도와 증명에 치중하였고 모형으로서의 해석이나 구체적인 수치를 적용한 모형의 검증은 아직 실행된 적이 없다. 본 논문은 점근적 충격파모형의 내포된 의미를 해석하고, 구체적인 수치를 바탕으로 한 시나리오를 통해 모형의 성능을 시험하였다. 그 결과 점근적 충격파모형은 기존 모형에 비해 수식상의 큰 차이는 없었지만, 유일한 차이인 등식의 세 번째 항목이 모형 결과에 결정적인 차이를 나타냄을 확인하였다. 새 모형에 도입된 파라메터는 적용된 수치의 대소에 따라 그 결과가 다르게 나타났다. 이는 기존의 충격파모형에는 없는 특징으로서, 적절한 수치를 선정한다면 다양한 교통흐름에 신축적으로 모형을 적용할 수 있을 것으로 판단된다. 또한 구체적인 수치를 적용한 점근적모형의 시나리오별 시험 결과 동일한 조건에서 새로운 모형은 기존 모형에 비해 충격파가 교통류의 하류 측으로 더 진행됨을 확인하였다. 양 모형간의 이러한 차이는 통계적 유의성 검토에서도 확인되었으며, 향후 현장 자료를 적용한 추가적 비교연구가 필요한 것으로 사료된다.

Optimization of SWAN Wave Model to Improve the Accuracy of Winter Storm Wave Prediction in the East Sea

  • Son, Bongkyo;Do, Kideok
    • 한국해양공학회지
    • /
    • 제35권4호
    • /
    • pp.273-286
    • /
    • 2021
  • In recent years, as human casualties and property damage caused by hazardous waves have increased in the East Sea, precise wave prediction skills have become necessary. In this study, the Simulating WAves Nearshore (SWAN) third-generation numerical wave model was calibrated and optimized to enhance the accuracy of winter storm wave prediction in the East Sea. We used Source Term 6 (ST6) and physical observations from a large-scale experiment conducted in Australia and compared its results to Komen's formula, a default in SWAN. As input wind data, we used Korean Meteorological Agency's (KMA's) operational meteorological model called Regional Data Assimilation and Prediction System (RDAPS), the European Centre for Medium Range Weather Forecasts' newest 5th generation re-analysis data (ERA5), and Japanese Meteorological Agency's (JMA's) meso-scale forecasting data. We analyzed the accuracy of each model's results by comparing them to observation data. For quantitative analysis and assessment, the observed wave data for 6 locations from KMA and Korea Hydrographic and Oceanographic Agency (KHOA) were used, and statistical analysis was conducted to assess model accuracy. As a result, ST6 models had a smaller root mean square error and higher correlation coefficient than the default model in significant wave height prediction. However, for peak wave period simulation, the results were incoherent among each model and location. In simulations with different wind data, the simulation using ERA5 for input wind datashowed the most accurate results overall but underestimated the wave height in predicting high wave events compared to the simulation using RDAPS and JMA meso-scale model. In addition, it showed that the spatial resolution of wind plays a more significant role in predicting high wave events. Nevertheless, the numerical model optimized in this study highlighted some limitations in predicting high waves that rise rapidly in time caused by meteorological events. This suggests that further research is necessary to enhance the accuracy of wave prediction in various climate conditions, such as extreme weather.

광안해역에서의 파랑변형예측 (Prediction Wave Transformation in the Kwangan Beach)

  • 박정철;김재중;이정만
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2000년도 춘계학술대회논문집
    • /
    • pp.75-81
    • /
    • 2000
  • Water waves propagate over irregular bottom bathymetry are transformed by refraction, diffraction, shoaling, reflection etc. Principal factor of wave transform is bottom bathymetry, but in case of current field, current is another important factor which effect wave transformation. The governing equation of this study is develop as wave-current equation type to investigate the effect of wave-current interaction. This wave-current model was applied to the Kwangan beach which is located at Pusan. The numerical simulation results of this model show the characteristics of wave transformation and flow pattern around the Kwangan beach fairly well.

  • PDF