• Title/Summary/Keyword: Wave Method

Search Result 6,822, Processing Time 0.032 seconds

Study on the Dynamic Behaviors of Wave Energy Converter by using RecurDyn (리커다인을 이용한 파력발전기 동적거동 연구)

  • Sohn, Jeong-Hyun;Jun, Chul-Woong;Kim, Min-Soo
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.35-40
    • /
    • 2017
  • In this study, the multi-body dynamics model for a wave energy converter is established. The equations of motions for the mechanical parts of the wave energy converter are derived to analyze the dynamic behavior. A spring method with the same performance as the counter weight method is proposed. The counter weight method and spring method are analyzed for evaluating the performance of the wave energy converter. RecurDyn program which is a kind of commercial multi-body dynamics program is used to perform the dynamic simulation of the wave energy converter.

Development of longitudinal acceleration wave decomposition method with single point measurement (단일 위치에서의 측정을 이용한 가속도 종파 분리 방법의 개발)

  • Jung, B.;Park, Y.;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.629-633
    • /
    • 2006
  • We investigated a new longitudinal acceleration wave decomposition method in time domain. The proposed method separates up- and down-stream waves with an axial strain and axial acceleration measured at a single point on the transmission path. The advantages such as low computation load and easy implementation would be possible by developing time domain under the following assumptions; low frequency range, uniform cross sectional area and elastic wave propagation. We confirmed the feasibility and performance of the method through experiment using Split Hopkinson Pressure Bar (SHPB). The method can be effective in several applications, including active vibration control with wave view point, where real time wave decomposition is necessary.

  • PDF

Development of Data Analysis Method for Surface Wave Test (표면파 지반 탐사를 위한 새로운 신호 처리기법의 개발)

  • Park, Hyung-Choon;Kim, Dong-Soo;Cho, Sung-Eun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.237-240
    • /
    • 2007
  • The evaluation of shear modulus (or shear wave velocity) profile of site is very important in the various fields of geotechnical engineering. To obtain shear wave velocity profile, various in-situ seismic methods using surface waves have been developed. These surface wave based in-situ seismic methods have their own strength and weakness. In this study, new seismic site characterization method using the harmonic wavelet analysis of wave (HWAW) was proposed to overcome some of weaknesses in the existing surface wave based seismic site characterization methods. HWAW method which is based on time-frequency analysis using harmonic wavelet transform have been developed to determine phase and group velocities of waves. In order to estimate the applicability of HWAW method, field tests were performed. Through field applications and comparison with other test results, the applicability of the proposed method were verified.

  • PDF

Numerical Analysis of Wave Transformation of Permeable Breakwater Permitting Wave Overtopping (월파를 허용하는 투과성 방파제의 파랑변형에 관한 수치해석)

  • 김도삼;이광호
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.1-5
    • /
    • 2002
  • In the past, ports have been mainly developed in natural harbors but nowadays ports are built wherever they can be economically justified. Therefore, construction of breakwater in area that establishment of structure is disadvantageous is risen according to the change of conditions to the location for ports. In case of building gravity breakwater in such point, need that plane shapes of more reasonable section permitting wave overtopping is necessary. One of the earliest methods for solving unsteady incompressible flow including free surfaces is the MAC(Marker And Cell) method by Harlow and Welch (1965). Recently. VOF(Volume Of Fluid) method to improve several drawbacks of MAC method is suggested by Hirt and Nichols(1981) and utilized extensively in fields of hydrodynamics. Wave overtopping phenomenon is simulated including wave breaking for permeable breakwater by numerical analysis and investigated features of wave overtopping behind structure using VOF method.

Nonlinear Wave Interaction of Three Stokes' Waves in Deep Water: Banach Fixed Point Method

  • Jang, Taek-S.;Kwon, S.H.;Kim, Beom-J.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1950-1960
    • /
    • 2006
  • Based on Banach fixed point theorem, a method to calculate nonlinear superposition for three interacting Stokes' waves is proposed in this paper. A mathematical formulation for the nonlinear superposition in deep water and some numerical solutions were investigated. The authors carried out the numerical study with three progressive linear potentials of different wave numbers and succeeded in solving the nonlinear wave profiles of their three wave-interaction, that is, using only linear wave potentials, it was possible to realize the corresponding nonlinear interacting wave profiles through iteration of the method. The stability of the method for the three interacting Stokes' waves was analyzed. The calculation results, together with Fourier transform, revealed that the iteration made it possible to predict higher-order nonlinear frequencies for three Stokes' waves' interaction. The proposed method has a very fast convergence rate.

A comparison of the neumann-kelvin and rankine source methods for wave resistance calculations

  • Yu, Min;Falzarano, Jeffrey
    • Ocean Systems Engineering
    • /
    • v.7 no.4
    • /
    • pp.371-398
    • /
    • 2017
  • Calm water wave resistance plays a very important role in ship hull design. Numerical methods are meaningful for this reason. In this study, two prevailing methods, the Neumann-Kelvin and the Rankine source method, were implemented and compared. The Neumann-Kelvin method assumes linearized free surface boundary condition and only needs to mesh the hull surface. The Rankine source method considers nonlinear free surface boundary condition and meshes both the ship hull surface and free surface. Both methods were implemented and the wave resistance of a Wigley III and three Series 60(Cb=0.6, 0.7, 0.8) hulls were analyzed. The results were compared with experimental results and the merits of both numerical techniques were quantified. Based on the results, it is concluded that the Rankine source method is more accurate in the calculation of the wave-making resistance. Using the Neumann-Kelvin method, it is found to be easier to model the hull and can be used for slender ships to solve problems like wave current coupling calculation.

Analysis of Wave Pressure of Irregular Waves in front of a Breakwater (방파제 전면부에서의 불규칙파의 파압해석)

  • Woo Jong Hyub;Cho Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1073-1077
    • /
    • 2005
  • In this study, wave pressure is calculated by using irregular waves in front of a breakwater. In the numerical model, the Reynolds equations are solved by a finite difference method and $k-{\varepsilon}$ model is employed for the turbulence analysis. To track the free surface displacement, the volume of fluid method is employed. The results of two cases present that wave pressure change due to irregular wave similar to wave height of irregular wave. It is observed that wave pressure of Case 2 more bigger than wave pressure of Case 1 at the same position.

  • PDF

Development and verification of a combined method of BEM and VOF (BEM과 VOF법을 결합한 수치모델의 개발과 그 타당성 검토)

  • Kim Sang-Ho;Yannshiro Masaru;Yoshida Akinori;Hashimoto Noriaki;Lee Jong-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.153-159
    • /
    • 2005
  • Recently, various novel numerical models based on Navier-Stokes equation rave been developed for calculating wave motions in the sea with coastal or ocean structures. Among those models, Volume Of Fluid (VOF) method might be the most popular one, and it has been used for numerical simulations of wave motions including complicated phenomena of wave breakings. VOF method, however, needs enormous computation time and large computational storage memories in general, thus it is practically difficult to use VOF method for calculations in the case of random waves because long and stable computation ( e.g. for more than 100 significant wave periods) is required to obtain statistically meaningful results. On the other hand of the wave motion is potential motion, Boundary Element Method (BEM), which is a much faster and more accurate method than VOF method, am be effectively used. The aim of this study is to develop a new efficient model applicable to calculations of wave motion and/or wave-structure interactions under random waves. To achieve this, a strictly combined BEM-VOF model has been developed by making the best use of both methods' merits; VOF method is used in a restricted fluid domain around a structure where complicated phenomena of wave breakings may exist, and BEM is used in the other domains far from the disturbance where the wave motion may be assumed to be potential. The verification of the model was performed with numerical results for Stokes'5th order wave propagation and a random wave propagation.

  • PDF

Estimation of Wave Power in Korean Coastal Waters (파랑에너지 해석 및 가용량 평가 연구)

  • 김현주;최학선;김선경
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.107-112
    • /
    • 1998
  • The purpose of this study is to analyze the amount of available wave power and its characteristics related to the development of apractical system for ocean wave energy conversion in Korean coastal waters. The analysis method of wave power was established through comparison between theory and numerical simulation of deep sea wave by Inverse Fourier Transform with random phase method. Based on the results of comparison, wave power was estimated by use of data set from observed offshore and coastal waves and hindasted deep sea waves around the Korean peninsula. Annual mean wave power is estimated as about 1.8 ~ 7.0 kW for every metre of wave frontage at East sea, 1.5~5.3 kW at South sea and 1.0 ~ 4.1 kW at West sea, respectively. Mean wave power along deep sea front of coastal waters of Korea amounts to about 4.7 GW. Regional distribution and seasonal variation of wave power were discussed to develop practical utilization system of wave power of not so high grade of available wave power.

  • PDF

Wave propagation in a 3D fully nonlinear NWT based on MTF coupled with DZ method for the downstream boundary

  • Xu, G.;Hamouda, A.M.S.;Khoo, B.C.
    • Ocean Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.83-97
    • /
    • 2014
  • Wave propagation in a three-dimensional (3D) fully nonlinear numerical wave tank (NWT) is studied based on velocity potential theory. The governing Laplace equation with fully nonlinear boundary conditions on the moving free surface is solved using the indirect desingularized boundary integral equation method (DBIEM). The fourth-order predictor-corrector Adams-Bashforth-Moulton scheme (ABM4) and mixed Eulerian-Lagrangian (MEL) method are used for the time-stepping integration of the free surface boundary conditions. A smoothing algorithm, B-spline, is applied to eliminate the possible saw-tooth instabilities. The artificial wave speed employed in MTF (multi-transmitting formula) approach is investigated for fully nonlinear wave problem. The numerical results from incorporating the damping zone (DZ), MTF and MTF coupled DZ (MTF+DZ) methods as radiation condition are compared with analytical solution. An effective MTF+DZ method is finally adopted to simulate the 3D linear wave, second-order wave and irregular wave propagation. It is shown that the MTF+DZ method can be used for simulating fully nonlinear wave propagation very efficiently.