• Title/Summary/Keyword: Wave Induced Currents

Search Result 95, Processing Time 0.029 seconds

Characteristics of Velocity Fields around 3-Dimensional Permeable Submerged Breakwaters under the Conditions of Salient Formation (설상사주 형성조건 하에 있는 3차원투과성잠제 주변에서 내부유속변동의 특성)

  • Lee, Kwang-Ho;Bae, Ju-Hyun;An, Sung-Wook;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.399-409
    • /
    • 2017
  • This study numerically investigates the characteristics of the velocity field including the average flow velocity, longshore current and turbulent kinetic energy acting as the main external forces of the salient formed behind the permeable submerged breakwaters. Shoreline response is also predicted by the longshore-induced flux. In this paper, a three-dimensional numerical wave tank based on the OLAFOAM, CFD open source code, is utilized to simulate the velocity field around permeable submerged breakwaters under the formation condition of salient. The characteristics of the velocity field around permeable submerged breakwaters with respect to the gap width between breakwaters and the installing position away from the shoreline under a range of regular waves for different wave height are evaluated. The numerical results revealed that as the gap width between breakwaters increases, the longshore currents become stronger. Furthermore, as the gap width becomes narrower, the point where flow converges moves from the center of the breakwater to the head part. As a result, it is possible to understand the formation of the salient formed behind the submerged breakwaters. In addition, it was found that the longshore currents caused by the gap width between breakwaters and the installation position away from the shoreline are closely related to the turbulent kinetic energy.

Analysis of Electromagnetic Coupling to an Infinitly Long Wire through a Slot in an Infinite Conducting Plate (무한도선과 무한 도체평판에 있는 슬롯간의 전자기적 결합에 대한 해석)

  • Baek, W. S.;Lee, C. H.;Cho, U. H.;Cho, Y. K.;Son, H.
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.2
    • /
    • pp.137-150
    • /
    • 1997
  • The problem of electromagnetic coupling into a thin conducting wire through a slot in an infinite conducting is analyzed by use of MPIE(mixed potential integral equation) and two- dimensional moment method using subsectional(rooftop) basis functions. The equivalent circuit is derived using a center-repesentation method which is valid in a narrow slot case. The equi- valent magnetic currents on the slot and the induced currents on the wire are caculated respec- tively, for the TM wave is incident upon the slot with arbitrary angle of incidence. The theoretical transmission coefficients of transmission line which is composed of thin-wire and infinite conducting plate with a narrow slot are compared and found to be in good agreement with experimental results.

  • PDF

Feasibility Study on Cold Water Pipe Diameter by Friction Loss and Energy Conversion on OTEC (해양온도차 발전을 위한 심층수 파이프 직경에 따른 에너지 손실량 검토)

  • Jung, Hoon;Heo, Gyunyoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.170-170
    • /
    • 2010
  • The energy conversion from the temperature difference between hot and cold source like ocean thermal energy conversion (OTEC), requires a long and large-diameter pipe (about 1000 to 10,000 meters long) to reach the deep water. The pipe diameter ranges from 2.8 meter for proposed early test systems, to 5 meter for large, commercial power generation systems. The pipe must be designed to resist collapsing pressures produced by water temperature and density differences, and the reduced pressure required to induce flow up the pipe. Other design considerations include the external-drag effect on the pipe due to ocean currents, and the wave-induced motions of the platform to which the pipe is attached. Various approaches to the pipe construction have been proposed, including aluminum, steel, concrete, and fiberglass. More recently, a flexible pipe construction involving the use of fiberglass reinforced plastic has been proposed. This report presents the results of a scaled fixed cold water pipe (CWP) model test program performed by EES(Engineering Equation Solver) to demonstrate the feasibility of this pipe approach.

  • PDF

Predictive model for wave-induced currents and 3D beach evolution based on FAVOR Method

  • Kuroiwa, Masamitsu;Abualtayef, Mazen;Takada, Tetsushi;Sief, Ahmed Khaled;Matsubara, Yuehi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.2
    • /
    • pp.68-74
    • /
    • 2010
  • The development of a numerical model using the fractional area/volume obstacle representation (FAVOR) method for predicting a nearshore current field bounded by complicated geometric shapes, and a three-dimensional (3D) beach evolution was described in this article. The 3D model was first tested against three cases to simulate the nearshore current fields around coastal structures, a river mouth, and a large scale cusp bathymetry. Then, the morphodynamic model tests, which are adopting the nearshore current model, were applied for the computations of beach evolution around a detached breakwater and two groins. It was confirmed that the presented model associated with the FAVOR method was useful to predict the nearshore current field in the vicinity of the complicated geometric shapes. Finally, the model was applied to a tombolo formation in a field site of Kunnui fishery port, which is located in Hokkaido, Japan.

Photoresponsive Characteristics of N-channel Pseudomorphic HEMT and MESFET Under Optical Stimulation for Possible Applications to Millimeter-Wave Photonics

  • 김동명;김희종;이정일;이유종
    • Electrical & Electronic Materials
    • /
    • v.12 no.8
    • /
    • pp.39-45
    • /
    • 1999
  • Comparative photoresponsive current-volt-age characteristics of n-channel PHEMT and MESFET on GaAs substrate. with (W/L)=200${\mu}{\textrm}{m}$/1${\mu}{\textrm}{m}$ of gates, are reported as a function of electro-optical stimulation (P\ulcorner, λ=830nm) for the first time as far as we know. Significantly different photoresponses are observed in MESFET and PHEMT, mainly due to different optoelectronic mechanisms in the formation and current conduction of channel carriers. Under high optical power, high photoresponsity with a strong non-linearity with P\ulcorner, predominantly due to a parallel conduction via a heavily doped Al\ulcornerGa\ulcornerAs donor layer, was observed in PHEMT while the optically induced drain current has been very small but monotonically increasing with optical stimulation in GaAs MESFET. We also investigated differences in optically stimulated gate leakage currents and photonic gate responses on gate voltage and drain voltage as a function of P\ulcorner. Based on the drain and gate responses to electro-optical stimulation. PHEMTs are expected to be a better candidate for high performance photonically responsive microwave device compared with MESFETs.

  • PDF

Political Islam and the War in Syria

  • MANFREDI FIRMIAN, Federico
    • Acta Via Serica
    • /
    • v.7 no.1
    • /
    • pp.105-130
    • /
    • 2022
  • This paper argues that the war in Syria is partly the result of a global Islamist wave that contributed to fuelling conflict across large regions of Asia and Africa. Of course, the war that has consumed Syria since 2011 most certainly has multiple interrelated causes and driving forces, and any attempt to isolate one or even two or three runs the risk of advancing an overly simplistic interpretation of history. This essay, therefore, does not aim to offer an appraisal of the multiple variables that contributed to the war in Syria. Instead, it zeroes in on how political Islam came to impact Syria and its people. In doing so, it demonstrates how competing varieties of political Islam represented leading causes of conflict. Indeed, different Islamist movements contributed to the outbreak of the war in 2011, fuelled the conflict for years on end, and to this day represent major obstacles to the achievement of sustainable peace. Four broad Islamist currents are especially relevant to the case of Syria: the Muslim Brotherhood; the Shia revivalist movement at the nexus of the alliance between Iran, Hezbollah, and Syria; Salafi jihadism and its volatile and fractious underworld of competing armed groups, from Al-Qaeda to the Islamic State; and Recep Tayyip Erdoğan's market-friendly Islamism, which induced Turkey to intervene in Syria's civil war.

Characteristics of Beach Change and Sediment Transport by Field Survey in Sinji-Myeongsasimni Beach (신지명사십리 해수욕장에서 현장조사에 의한 해빈변화와 퇴적물이동 특성)

  • Jeong, Seung Myong;Park, Il Heum
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.594-604
    • /
    • 2021
  • To evaluate the causes of beach erosion in Sinji-Myeongsasimni Beach, external forces, such as tides, tidal currents, and waves, were observed seasonally from March 2019 to March 2020, and the surface sediments were analyzed for this period. In addition, the shoreline positions and beach elevations were regularly surveyed with a VRS GPS and fixed-wing drone. From these field data, the speed of the tidal currents was noted to be insufficient, but the waves were observed to af ect the deformation of the beach. As the beach is open to the southern direction, waves of heights over 1 m were received in the S-SE direction during the spring, summer, and fall seasons. Large waves with heights over 2 m were observed during typhoons in summer and fall. Because of the absence of typhoons for the previous two years from July 2018, the beach area over datum level (DL) as of July 2018 was greater by 30,138m2 compared with that of March 2019, and the beach area as of March 2020 decreased by 61,210m2 compared with that of March 2019 because of four typhoon attacks after July 2018. The beach volume as of March 2019 decreased by 5.4% compared with that of July 2018 owing to two typhoons, and the beach volume as of September 2019 decreased by 7.3% because of two typhoons during the observation year. However, the volume recovered slightly by about 3% during fall and winter, when there were no high waves. According to the sediment transport vectors by GSTA, the sediments were weakly influxed from small streams located at the center of the beach; the movement vectors were not noticeable at the west beach site, but the westward sediment transport under the water and seaward vectors from the foreshore beach were prominently observed at the east beach site. These patterns of westward sediment vectors could be explained by the angle between the annual mean incident wave direction and beach opening direction. This angle was inclined 24° counterclockwise with the west-east direction. Therefore, the westward wave-induced currents developed strongly during the large-wave seasons. Hence, the sand content is high in the west-side beach but the east-side beach has been eroded seriously, where the pebbles are exposed and sand dune has decreased because of the lack of sand sources except for the soiled dunes. Therefore, it is proposed that efforts for creating new sediment sources, such as beach nourishment and reducing wave heights via submerged breakwaters, be undertaken for the eastside of the beach.

Experimental Study on Elastic Response of Circular Cross-section Slender Body to Forced Oscillation, Waves, and Current (복합 외력환경 중 원형 단면 세장체의 탄성응답에 관한 실험적 연구)

  • Park, Ji-won;Lee, Seung-Jae;Jo, Hyo-Jae;Hwang, Jae-Hyuk;Han, Sung-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.91-99
    • /
    • 2016
  • The global demand for oil and natural gas has increased, and resource development is moving to the deep sea. Floating and flexible offshore structures such as semi-submersible, spar, and FPSO structures have been widely used. The major equipment of floating structures is always exposed to waves, currents, and other marine environmental factors, which cause structural damage. Moreover, flexible risers are susceptible to an exciting force due to the motion of the floating body. The inline and transverse responses from the three-dimensional behavior of a floating structure occur because of various forces. Typical risers are made of steel pipe and applied in the oil and gas development field, but flexible materials such as polyethylene are suitable for OTEC risers. Consequently, the optimal design of a flexible offshore plant requires a dynamic behavior analysis of slender bodies made of the different materials commonly used for offshore flexible risers. In this study, a three-dimensional motion measurement device was used to analyze the displacements of riser models induced by external force factors, and forced oscillation of a riser was linked to forced oscillation under a steady flow and regular wave condition.

Nearshore Sediment Transport in Vicinity of Anmok Harbor, East Coast of Korea. (동해 안목항 주변 연안 토사이동)

  • 김인호;이정렬
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.2
    • /
    • pp.108-119
    • /
    • 2004
  • The breakwater extension at Anmok Harbor has resulted in erosional stresses along the wide range of shorelines immediately south of the harbor. In this study, therefore, the downdrift affects caused by the breakwater extension are investigated through both analytical and numerical approaches. In addition, this study stresses the need of monitoring and analysis system for the effective integrated coastal zone management and shows through the case study of Anmok Harbor how the numerical experiments are accomplished for the coastal zone management. The numerical model system, which predicts the seabed changes obtained from the difference between the rates of sediment pickup and settling due to gravity, is combined with the wave, wave-induced currents, and suspended sediment transport models. A new relationship between the near-bed concentration and the depth-mean concentration, which is required in estimating the settling rates. is presented by analyzing the vertical structure of concentration.

A Study on the Limit of Anchor Dragging for Ship at Anchor( I ) (묘박 중인 선박의 주묘 한계에 관한 연구( I ))

  • Lee, Yun-Sok;Jung, Yun-Chul;Kim, Se-Won;Yun, Jong-Hwui;Bae, Suk-Han;Nguyen, Phung-Hung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.165-171
    • /
    • 2005
  • When typhoon approaches, ship normally drops her anchor at proper anchorage for sheltering. If an anchoring ship is under the influence of typhoon, she can keep her position when the external force and counter force is balanced. Where, external force is induced by wind, wave and tidal currents while counter force is induced by holding power of anchor/chain and thrust force of main engine. In this study, authors presented a method to analyze theoretically the limit of external force for the ship to keep her position without being dragged and, to check the validity of method, applied this to the ship which had been anchored in Jinhae Bay when the typhoon MAEMI passed on September 2003.

  • PDF