• 제목/요약/키워드: Wave Forces

검색결과 595건 처리시간 0.022초

실린더에 작용하는 파력 및 조류력에 관한 연구 (A Study of Wave and Current Forces on Cylinders)

  • 박광동;조효제;구자삼
    • 한국해양공학회지
    • /
    • 제15권4호
    • /
    • pp.14-19
    • /
    • 2001
  • In this paper, the wave and current forces acting on cylinders are investigated by theoretical and experimental methods. The models used are one-cylinder, four-cylinder and semi-submersible types. The theoretical investigations are carried out by the Morison equation and three dimensional source distribution method to calculate exciting forces in waves with and without currents. The experimental investigations are carried out in the wave tank which can generate currents in both directions. In these tests, the models have been exposed to the regular waves with and without currents. It is shown that the exciting forces acting on the one-cylinder or four-cylinders can be approximately estimated by the Morison equation and also by the diffraction theory. However, the Morison equation seems to be not appropriate to estimate the exciting forces on the present type of semi-submersible.

  • PDF

이어도 종합해양과학기지에 대한 설계파력의 검토 I: 삼차원 수리모형실험 (Investigation of the Design Wave Forces for Ear-Do Ocean Research Station I: Three Dimensional Hydraulic Model Tests)

  • 전인식;심재설;최성진
    • 한국해안해양공학회지
    • /
    • 제12권4호
    • /
    • pp.157-167
    • /
    • 2000
  • 한국해양연구소는 1998년에 이어도 종합해양과학기지의 기본설계를 수행한 바 있으며 심해 설계파에 Morison 식과 Stream function 이론을 적용하여 설계파력을 결정한 바 있다. 본 연구에서는 삼차원 수리모형실험 통하여 이어도 해역에서의 파랑전파를 모의하였으며, 구조물의 파력 및 Air gap를 계측하고 이들을 SACS 프로그램의 계산치와 비교함으로써 기본설계 값들의 타당성을 검토하였다. 그 결과, 시도된 4개의 심해파향 중에서 SSW, S, SE계열의 파향에 대해서는 계측치가 SACS 계산치 보다 작게 나타났다. 그러나, 유일하게 구조물에 미치기 전에 쇄파되는 NNW계열의 파향에서는 전반적으로 SACS 계산치를 상회하였으며, 그방향성 흐름과 파가 복합되어 있는 경우와 매우 유사한 파력변화를 보여주었다. 구조물의 Air gap은 모든 심해파향에 대하여 계측치가 기본설계치보다 작은 것으로 나타났다.

  • PDF

Response of square tension leg platforms to hydrodynamic forces

  • Abou-Rayan, A.M.;Seleemah, Ayman A.;El-Gamal, Amr R.
    • Ocean Systems Engineering
    • /
    • 제2권2호
    • /
    • pp.115-135
    • /
    • 2012
  • The very low natural frequencies of tension leg platforms (TLP's) have raised the concern about the significance of the action of hydrodynamic wave forces on the response of such platforms. In this paper, a numerical study using modified Morison equation was carried out in the time domain to investigate the influence of nonlinearities due to hydrodynamic forces and the coupling effect between surge, sway, heave, roll, pitch and yaw degrees of freedom on the dynamic behavior of TLP's. The stiffness of the TLP was derived from a combination of hydrostatic restoring forces and restoring forces due to cables and the nonlinear equations of motion were solved utilizing Newmark's beta integration scheme. The effect of wave characteristics such as wave period and wave height on the response of TLP's was evaluated. Only uni-directional waves in the surge direction was considered in the analysis. It was found that coupling between various degrees of freedom has insignificant effect on the displacement responses. Moreover, for short wave periods (i.e., less than 10 sec.), the surge response consisted of small amplitude oscillations about a displaced position that is significantly dependent on the wave height; whereas for longer wave periods, the surge response showed high amplitude oscillations about its original position. Also, for short wave periods, a higher mode contribution to the pitch response accompanied by period doubling appeared to take place. For long wave periods, (12.5 and 15 sec.), this higher mode contribution vanished after very few cycles.

시간영역에서 ISSC TLP의 비선형 응답 특성 (Nonlinear Response Characteristics of the ISSC TLP in Time Domain)

  • 이창호
    • 한국해양공학회지
    • /
    • 제20권5호
    • /
    • pp.30-35
    • /
    • 2006
  • In tire presence of incident waves with different frequencies, there are second order sum and difference frequency wave exciting forces due to the nonlinearity of tire incident waves. Although the magnitude of these nonlinear wave forces are small, they act on TLPs at sum and difference frequencies away from those of the incident waves. So, the second order sum and difference frequency waveexciting forces occurring close to tire natural frequencies of TLPs often give greater contributions to high and law frequency resonant responses. Nonlinear motion responses and tension variations in the time domain are analyzed by solving the motion equations with nonlinear wave exciting forces using tire numerical analysismethod. The numerical results of time domain analysis for the nonlinear wave exciting forces on the ISSC TLP in regular waves are compared with the numerical and experimental ones of frequency domain analysis. The results of this comparison confirmed tire validity of the proposed approach.

잠제상에 설치된 표식암(의암)에 작용하는 규칙파파력의 실험적 연구 (Wave force Acting on the Artificial Rock installed on a Submerged Breakwater in a Regular Wave field)

  • 배기성;허동수
    • 한국해양공학회지
    • /
    • 제16권6호
    • /
    • pp.7-17
    • /
    • 2002
  • Recently, artificial rocks, instead of buoys, have been placed on the submerged breakwater to indicate its location. The accurate estimation of wave forces on these rocks is deemed necessary for their stability design. Characteristics of the wave force, however, are expected . to be very complicated because of the occurrence of breaking or post-breaking waves. In this regard, wave forces exerted on an artificial rock have been investigated in this paper. The maximum wave force has been found to strongly dependent on the location and shape of the artificial rock that is placed on the submerged breakwater. The plunging breaker occurs near the loading cram edge of a submerged breakwater, which cause impulsive breaking wave force on the rock. Using the Morison equation, with the velocity and acceleration at the front face of the artificial rock and varying water surface level, it is possible to estimate wave forces, even impulsive breaking wave forces, that are acting on the rock installed on a submerged breakwater. The vertical wave force is also found to depend, significantly, on the buoyant force.

회파블록케이슨 방파제의 수리학적 성능에 관한 실험적 연구 (Experimental Study on Hydraulic Performance of Perforated Caisson Breakwater with Turning Wave Blocks)

  • 김인철;박기철
    • 한국해양공학회지
    • /
    • 제33권1호
    • /
    • pp.61-67
    • /
    • 2019
  • Recently, a perforated caisson breakwater with turning wave blocks was developed to improve the water affinity and public safety of a rubble mound armored by TTP. In this study, hydraulic model tests were performed to examine the hydraulic performance of a non-porous caisson and new caisson breakwater with perforated blocks for attacking waves in a small fishery harbor near Busan. The model test results showed that the new caisson was more effective in dissipating the wave energy under normal wave conditions and in reducing the wave overtopping rates under design wave conditions than the non-porous caisson. It was found that the horizontal wave forces acting on the perforated caisson were slightly larger than those on the non-porous caisson because of the impulsive forces on the caisson with the turning wave blocks.

파랑 중 스파 플랫폼의 시간영역 해석 (Time Domain Analysis of Spar Platform in Waves)

  • 이호영;임춘규
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.167-171
    • /
    • 2004
  • The Spar platform with deep draft is characterized as effective structure in extreme wave condition, which has larger natural period than that of waves in sea. In this paper, the time simulation of motion responses of Spar with catenary mooring line is presented in irregular waves. The memory effect is modeled by added mass at infinite frequency and convolution integrals in terms of wave damping coefficients. The added mass, wave damping coefficients and wave exciting forces are obtained from three-dimensional panel method in the frequency domain. The motion equations are consisted of forces for inetia, memory effect, hydrostatic restoring, wave exciting and mooring line. The forces of mooring line are modeled as quasi-static catenary cable.

  • PDF

The Wave Exciting Forces Acting on a Submerged-Plate

  • Lee, Sang-Min
    • 한국항해항만학회지
    • /
    • 제28권7호
    • /
    • pp.641-645
    • /
    • 2004
  • In this study, we focus on the submerged plate built into the Very Large Floating Structure with the partial openings of 5m long, which enables the reverse flow of incident wave to generate the wave breaking. The purpose of this study is to investigate the characteristics of wave exciting forces acting on the submerged plate. Firstly, we have carried out the extensive experiments to understand the characteristics of the wave exciting forces. Then we have performed the numerical simulations by applying the Marker and Cell method and compared with the experimental results. We discuss the validity of MAC method and the effects of the submerged plate on the motion of VLFS.

The Wave Exciting Forces Acting on a Submerged-Plate

  • Lee, Sang-Min;Kong, Gil-Young;Kim, Chol-Seong
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2004년도 춘계학술대회 논문집
    • /
    • pp.203-207
    • /
    • 2004
  • In this study, we focus on the submerged plate built into the Very Large Floating Structure with the partial openings of 5m long, which enables the reverse flow of incident wave to generate the wave breaking. The purpose of this study is to investigate the characteristics of wave exciting forces acting on the submerged plate. Firstly, we have carried out the extensive experiments to understand the characteristics of the wave exciting forces. Then we have performed the numerical simulations by applying the Marker and Cell method and compare with the experimental results. We discuss the validity of MAC method and the effects of the submerged plate on the motion of VLFS.

  • PDF

파랑 중 계류된 스파 플랫폼의 시간영역 해석 (Time Domain Analysis of a Moored Spar Platform in Waves)

  • 이호영;임춘규
    • 대한조선학회논문집
    • /
    • 제41권5호
    • /
    • pp.1-7
    • /
    • 2004
  • The Spar platform with deep draft is characterized as effective structure in extreme wave condition, which has larger natural period than that of waves in sea. In this paper, the time domain simulation of motion responses of Spar with catenary mooring line is presented in irregular waves. The memory effect is modeled by added mass at infinite frequency and convolution integrals in terms of wave damping coefficients. The added mass, wave damping coefficients and wave exciting forces are obtained from three-dimensional panel method in the frequency domain. The motion equations are consisted of forces for inertia, memory effect, hydrostatic restoring, wave exciting and mooring line. The forces of mooring line are modeled as quasi-static catenary cable.