• Title/Summary/Keyword: Wave Energy Dissipation

Search Result 127, Processing Time 0.025 seconds

Wave Transformation near the Surfzone on the Arbitrary Beach Profile (불규칙한 수심단면에서 쇄파대 부근의 파고변형)

  • Choi, Han-Kyu;Gang, Jang-Su;Lee, Cheol-Eung
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.261-275
    • /
    • 1997
  • The objective of this paper is to develop two numerical model for predicting the wave height with set-up/down near the surfzone on a arbitrary beach profile. Two wave models, regular wave model and random wave model, are based on the energy flux equation with the energy dissipation effects. The developed numerical models are verified by comparison of numerical results with analytical solutions that are derived under the simple conditions. The characteristics of parameters included in each model are then investigated and decided to the range of behaviour by the sensitivity analysis. For sensitivity analysis, we carried out total 46 laboratory tests. Finally, the developed numerical models are applied to the field where the wave height near the surfzone has been measured. From the applications of numerical models, it is concluded that the developed numerical models may accurately predict the wave height with the set-up/down near the surfzone on a arbitrary beach profile.

  • PDF

Reflection and Dissipation Characteristics of Non-overtopping Quarter Circle Breakwater with Low-mound Rubble Base

  • Balakrishna, K;Hegde, Arkal Vittal;Binumol, S
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.1
    • /
    • pp.44-54
    • /
    • 2015
  • Breakwaters are the coastal structures constructed either perpendicular (shore connected) or parallel (detached) to the coast. The main function of breakwater is to create a tranquil medium on its leeside by reflecting the waves and also dissipating the wave energy arriving from seaside, resulting in ease of manoeuvrability to boats or ships to their berthing places. Different types of breakwaters are being used at present, such as rubble mound breakwater, vertical wall type breakwater and composite breakwater. The objective of this paper is to investigate reflection coefficients (Kr) and dissipation (loss) coefficients (Kl) for physical models of Quarter circle caisson breakwater of three different radii of 0.550 m, 0.575 m and 0.600 m with S/D ratio of 2.5 (S=spacing between perforations, D=diameter of perforations). The models were tested in the monochromatic wave flume of the department, for different incident wave heights (Hi), Wave periods (T) and water depths (d). It was observed that reflection coefficient increased with increase in the wave steepness (Hi/gT2) and decreased with increase in depth parameter (d/gT2) and hs/d (Height of structure including rubble base/depth of water). The loss coefficient decreased with increase in the wave steepness and increased with increase in depth parameter and hs/d.

Numerical study on the performance of semicircular and rectangular submerged breakwaters

  • Barzegar, Mohammad;Palaniappan, D.
    • Ocean Systems Engineering
    • /
    • v.10 no.2
    • /
    • pp.201-226
    • /
    • 2020
  • A systematic numerical comparative study of the performance of semicircular and rectangular submerged breakwaters interacting with solitary waves is the basis of this paper. To accomplish this task, Nwogu's extended Boussinesq model equations are employed to simulate the interaction of the wave with breakwaters. The finite difference technique has been used to discretize the spatial terms while a fourth-order predictor-corrector method is employed for time discretization in our numerical model. The proposed computational scheme uses a staggered-grid system where the first-order spatial derivatives have been discretized with fourth-order accuracy. For validation purposes, five test cases are considered and numerical results have been successfully compared with the existing analytical and experimental results. The performances of the rectangular and semicircular breakwaters have been examined in terms of the wave reflection, transmission, and dissipation coefficients (RTD coefficients) denoted by KR, KT, KD. The latter coefficient KD emerges due to the non-energy conserving KR and KT. Our computational results and graphical illustrations show that the rectangular breakwater has higher reflection coefficients than semicircular breakwater for a fixed crest height, but as the wave height increases, the two reflection coefficients approach each other. un the other hand, the rectangular breakwater has larger dissipation coefficients compared to that of the semicircular breakwater and the difference between them increases as the height of the crest increases. However, the transmission coefficient for the semicircular breakwater is greater than that of the rectangular breakwater and the difference in their transmission coefficients increases with the crest height. Quantitatively, for rectangular breakwaters the reflection coefficients KR are 5-15% higher while the diffusion coefficients KD are 3-23% higher than that for the semicircular breakwaters, respectively. The transmission coefficients KT for rectangular breakwater shows the better performance up to 2.47% than that for the semicircular breakwaters. Based on our computational results, one may conclude that the rectangular breakwater has a better overall performance than the semicircular breakwater. Although the model equations are non-dissipative, the non-energy conserving transmission and reflection coefficients due to wave-breakwater interactions lead to dissipation type contribution.

Submerged Floating Wave Barrier

  • Kee S.T.;Park W.S.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.85-89
    • /
    • 2004
  • The wave interactions with fully submerged and floating dual buoy/vertical porous membrane breakwaters has been investigated in experimentally to validate the developed theory and numerical method in the previous study, in which multi-domain hydro-elastic formulation was carried out in the context of linear wave-body interaction theory and Darcy's law. It is found that the experimental results agrees well with the numerical prediction. Transmission and reflection can be quite reduced simultaneously especially in the region of long waves. The properly tuned system to incoming waves can effectively dissipate wave energy and also offset each other between incident and scattered waves using its hydro-elasticity and geometry.

  • PDF

Investigation of Applicability of OpenFOAM for Regular Wave Modeling of Floating Vertical Plate (부유식 연직판의 규칙파 모델링을 위한 오픈폼 적용성 검토)

  • Oh, Sang-Ho;Kim, Gunwoo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.382-388
    • /
    • 2017
  • This study performed an OpenFOAM-based numerical modeling for simulating performance of wave reduction by a floating vertical plate. Based on the Waves2FOAM library, an internal wave generation and energy dissipation with sponge layers schemes were further implemented. The performance of wave generation and dissipation was first tested with a simple two-dimensional analysis. Then, numerical simulation was carried out with the experimental data of Briggs et al. (2001) for the two regular wave cases. In general, the modeling results agreed well with the experimental data, showing better agreement than the numerical analysis by WAMIT that is included in Briggs et al. (2001).

Numerical Analysis of Beach Erosion Due to Severe Storms (폭풍에 의해 발생하는 해빈침식에 대한 수치해석)

  • 조원철;표순보
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.1
    • /
    • pp.19-26
    • /
    • 2000
  • A numerical model is applied for predicting two-dimensional beach and dune erosion during severe storms. The model uses equation of sediment continuity and dynamic equation, governing the on-offshore sediment transport due to a disequilibrium of wave energy dissipation. And the model also uses sediment transport rate parameter K from dimensional analysis instead of that recommended by Kriebel. During a storm, a beach profile evolves to a form where the depth at the surf zone is related to the distance seaward of the waterline. In general, the erosion in the beach profile is found to be sensitive to equilibrium profile parameter, sediment transport rate parameter, storm surge level and breaking wave height.

  • PDF

Levee Breach Flow by Experiment and Numerical Simulation (수리실험 및 수치모의를 이용한 제방붕괴 흐름해석)

  • Kim, Joo-Young;Lee, Jong-Kyu;Lee, Jin-Woo;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.6
    • /
    • pp.461-470
    • /
    • 2011
  • Abrupt and gradual levee breach analyses on the flat domain were implemented by laboratory experiments and numerical simulations. To avoid the reflective wave from the side wall the experiment was performed in a large domain surrounded by waterway. A numerical model was developed for solving the two-dimensional gradual levee breach flow. The results of the numerical simulation developed in this study showed good agreement with those of the experimental data. However, even if the numerical schemes effectively replicated the trends of the observed water depth for the first shock, there were little differences for the second shock. In addition, even though the model considered the Smagorinsky horizontal eddy viscosity, the location and height of the hydraulic jump in the numerical simulation were not fairly well agree with experimental measurements. This shows the shallow water equation solver has a limitation which does not exactly reproduce the energy dissipation from the hydraulic jump. Further study might be required, considering the energy dissipation due to the hydraulic jump or transition flow from reflective wave.

Analysis on the Wave Characteristics of Submerged Breakwater Considering Energy Dissipation of Seabed (해저면의 에너지 감쇠를 고려한 불투과 잠제의 파랑특성해석)

  • Kim Nam-Hyeong;Yang Soon-Bo;Park Min-Su;Kim Sang-Jin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.3
    • /
    • pp.131-136
    • /
    • 2004
  • The transmission coefficients of impermeable submerged breakwater on permeable bottom are computed numerically using a boundary element method. The analysis method is based on the wave pressure function with the continuity in the analytical region including fluid and structures. Wave motion over permeable bottom is simulated by introducing a linear dissipation coefficient and an added mass coefficient. The results indicate that the wave over permeable bottom travels being damped, and that transmission coefficients for permeable bottom are smaller than those for impermeable bottom, and result from the change of width and height of submerged breakwater.

  • PDF

Implosion Analysis of Circular Cylinder using Simplified Model (간이물리모델을 이용한 원통형 압력용기의 내파해석)

  • Nho, In Sik;Cho, Sang Rai;Kim, Yong Yook;Han, Soonhung;Cho, Yoon Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.1
    • /
    • pp.8-14
    • /
    • 2020
  • The implosion phenomena of pressure vessels operating in deep water under extremely high external pressure have been well known. The drastic energy release to ambient field in the form of pressure pulse is accompanied with catastrophic collapse of shell structure. Such a proximity shock wave could be a serious threat to the structural integrity of adjacent submerged body and several suspected accidents have been reported. In this study, basic research for the occurrence and development of shock wave due to implosion was carried out. The mechanism of pressure pulse generation and energy dissipation were investigated, and a simplified kinematic model to approximate the collapse modes of circular tubes which can be generated by external pressure and implosion was examined. Using the simplified kinematic model, the process of energy dissipation was formulated, and the magnitude of released pressure shock wave was estimated quantitatively. To investigate the validity of developed kinematic model and shock wave estimation process, the results from a nonlinear FE analysis code and collapse test carried out using pressure chamber were compared with the results from the developed kinematic model.

Analysis of Water Hammering in a Pipe Having an Accumulator

  • Suh, Yong-Kweon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.1
    • /
    • pp.19-30
    • /
    • 2002
  • This paper addresses characteristics of compressible flow dynamics inside a pipe with an accumulator and an inlet orifice. It also presents a simple but stable numerical method associated with the accumulator-orifice calculation. In particular, a focus is given to developing a method of finding an optimum design of the accumulator-orifice system (i.e., the accumulator size and the throttle resistance) that gives the most effective dissipation of the water-hammering problem. It is found that there exists indeed an optimum set of parameter values for the most effective dissipation of the wave energy.