• Title/Summary/Keyword: Watson-Crick DNA Base Pair

Search Result 3, Processing Time 0.014 seconds

The Effect of Water in Four Adenine-Thymine and Three Guanine-Cytosine Pairs: Combining Quantum and Statistical Mechanics

  • Lee, Jinkeong;Ham, Sihyun
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.151-155
    • /
    • 2015
  • The molecular interactions between the nucleic acid bases and water molecules are important in organism. Despite Adenine-Thymine Hoogsteen base pair and Guanine-Cytosine Watson-Crick base pair have been demonstrated to be most stable in a gas phase, the effect of water on the stability of these base pairs remains elusive. Here we report the structural and thermodynamic characteristics on possible Adenine-Thymine and Guanine-Cytosine base pairs in a gas phase as well as in an aqueous phase by using quantum mechanical method and statistical mechanical calculations. First, we optimized the direct base-pair interaction energies of four Adenine-Thymine base pairs (Hoogsteen base pair, reverse Hoogsteen base pair, Watson-Crick base pair, and reverse Watson-Crick base pair) and three Guanine-Cytosine base pairs (GC1 base pair, GC2 base pair, and Watson Crick base pair) in a gas phase at the $B3LYP/6-31+G^{**}$ level. Then, the effect of solvent was quantified by the electronic reorganization energy and the solvation free energy by statistical mechanical calculations. Thereby, we discuss the effect of water on the stability of Adenine-Thymine and Guanine-Cytosine base pairs, and argue why Adenine-Thymine Watson-Crick base pair and Guanine-Cytosine Watson-Crick base pair are most stable in an aqueous environment.

  • PDF

Molecular Dynamics Simulation of Intercalation of Benzopyrene Motif in DNA (핵산의 분자역학적 모의실험을 통한 벤조피렌 층상구조의 발현)

  • Park, Kyung-Lae;Santos, Carlos De Los
    • YAKHAK HOEJI
    • /
    • v.54 no.1
    • /
    • pp.62-66
    • /
    • 2010
  • Benzopyrene is known to be one of the most powerful carcinogens which can build intercalated motif between base pairs in damaged DNA. The dimension of benzopyrene itself is much bigger than any of the DNA bases and thus the question whether the lesion of some base pair by insertion of benzopyrene can happen with or without a dramatic distortion of the helical structure is a highly interesting theme. In this work we used a molecular mechanics simulation using AMBER program package to go into the conformational characteristics. The condition of the insertion process of the benzopyrene motif from minor groove of the starting structure between the base pairs in the internal area of double helix was investigated using the molecular dynamics simulation at elevated temperature.

Conformational and Molecular Dynamical Properties of Damaged DNA (손상된 핵산의 구조와 분자동력학적 특성)

  • Park, Kyung-Lae;Santos, Carlos De Los
    • YAKHAK HOEJI
    • /
    • v.54 no.1
    • /
    • pp.67-74
    • /
    • 2010
  • Some of the benzopyrene (BP)-DNA adduct are known to build intercalated motif between flanking base pairs in damaged DNA depending on the structural condition. The size of benzopyrene itself is definitely not comparable with any of the DNA bases and thus the question whether the lesion of some base pair by insertion of benzopyrene can happen with or without a dramatic distortion of the helical structure is a highly interesting theme. In this work we used a molecular dynamics simulation based on the theory of molecular mechanics. The specific consequences about the structural properties of the intercalated structures and benzopyrene motif in minor groove of the double helix are deduced after 5 ns simulation time.