• 제목/요약/키워드: Watershed model HSPF

검색결과 113건 처리시간 0.021초

HSPF 모형을 이용한 산청 유역의 소유역별 축산비점오염부하량 비중 분석 (Analysis of Livestock Nonpoint Source Pollutant Load Ratio for Each Sub-watershed in Sancheong Watershed using HSPF Model)

  • 김소래;김상민
    • 한국농공학회논문집
    • /
    • 제62권1호
    • /
    • pp.39-50
    • /
    • 2020
  • The objective of this study was to assess the livestock nonpoint source pollutant impact on water quality in Namgang dam watershed using the HSPF (Hydrological Simulation Program-Fortran) model. The input data for the HSPF model was established using the landcover, digital elevation, and watershed and river maps. In order to apply the pollutant load to the HSPF model, the delivery load of the livestock nonpoint source in the Namgang dam watershed was calculated and used as a point pollutant input data for the HSPF model. The hydrologic and water quality parameters of HSPF model were calibrated and validated using the observed runoff data from 2007 to 2015 at Sancheong station. The R2 (Determination Coefficient), RMSE (Root Mean Square Error), NSE (Nash-Sutcliffe efficiency coefficient), and RMAE (Relative Mean Absolute Error) were used to evaluate the model performance. The simulation results for annual mean runoff showed that R2 ranged 0.79~0.81, RMSE 1.91~2.73 mm/day, NSE 0.7~0.71 and RMAE 0.37~0.49 mm/day for daily runoff. The simulation results for annual mean BOD for RMSE ranged 0.99~1.13 mg/L and RMAE 0.49~0.55 mg/L, annual mean TN for RMSE ranged 1.65~1.72 mg/L and RMAE 0.55 mg/L, and annual mean TP for RMSE ranged 0.043~0.055 mg/L and RMAE 0.552~0.570 mg/L. As a result of livestock nonpoint pollutant loading simulation for each sub-watersehd using the HSPF model, the BOD ranged 16.6~163 kg/day, TN ranged 27.5~337 kg/day, TP ranged 1.22~14.1 kg/day.

만경강유역에서의 HSPF 모형의 보정 (Calibration of HSPF Model from Mangyeong River Watershed)

  • 정재운;장정렬;정지연;최강원;임병진;김상돈;김갑순;윤광식
    • 한국관개배수논문집
    • /
    • 제18권1호
    • /
    • pp.58-67
    • /
    • 2011
  • The HSPF (Hydrological Simulation Program-Fortran) model was applied to Mangyeong river watershed to examine its applicability through calibration using monitoring data. For the model application, digital maps were constructed for watershed boundary, land-use, Digital Elevation Model of Mangyeong river watershed using BASINS (Better Assessment Science for Intergrating point and Nonpoint Sources) program. The observed runoff was 1976.4mm while the simulated runoff was 1913.4mm from 2007 to 2008. The model results showed that the simulated runoff was in a good agreement with the observed data and indicated reasonable applicability of the model. In terms of water quality, trends of the observed value were in a good agreement with simulated value despite its model performance lower than expected. However, its reliability and performance were with the expectation considering complexity of the watershed, pollutant sources and land use intermixed in the watershed. Overall, we identified application of HSPF model as reliable evidence by model performance.

  • PDF

BASINS/HSPF를 이용한 화성유역 오염부하량의 정량적 평가 (Quantitative Estimation of Pollution Loading from Hwaseong Watershed using BASINS/HSPF)

  • 정광욱;윤춘경;장재호;김형철
    • 한국농공학회논문집
    • /
    • 제49권2호
    • /
    • pp.61-74
    • /
    • 2007
  • A mathematical modeling program called Hydrological Simulation Program-FORTRAN (HSPF) developed by the United States Environmental Protection Agency (EPA) was applied to Hwaseong watershed. It was run under BASINS (Better Assessment Science for Integrating Point and Nonpoint Sources) program, and the model was validated using monitoring data of $2002{\sim}2005$. The model efficiency of runoff ranged from good to fair in comparison between simulated and observed data, while it was from very good to poor in the water quality parameters. But its reliability and performance were within the expectation considering complexity of the watershed and pollutant sources. The nonpoint source (NPS) loading for T-N and T-P during the monsoon rainy season (June to September) was about 80% of total NPS loading, and runoff volume was also in a similar range. However, NPS loading for BOD ($55{\sim}60%$) didn't depend on rainfall because BOD was mostly discharged from point source (more than 70%). And water quality was not necessarily high during the rainy season, and showed a decreasing trend with increasing water flow. BASINS/HSPF was applied to the Hwaseong watershed successfully without difficulty, and it was found that the model could be used conveniently to assess watershed characteristics and to estimate pollutant loading including point and nonpoint sources in watershed scale.

HSPEXP 모형평가지표 이용한 HSPF 모형의 수문매개변수 보정 (Calibration of HSPF Hydrology Parameters Using HSPEXP Model Performance Criteria)

  • 김상민;성충현;박승우
    • 한국농공학회논문집
    • /
    • 제51권4호
    • /
    • pp.15-20
    • /
    • 2009
  • The purpose of this study was to test the applicability of the HSPEXP model performance criteria for calibrating hydrologic parameters of HSPF. Baran watershed, located at Whasung city, was selected as a study watershed in this study. Input data for the HSPF model were obtained from the digital elevation map, landuse map, soil map and others. Water flow data from 1996 to 2000 was used for calibration and from 2002 to 2007 was for validation. Using the HSPEXP decision-support software, hydrology parameters were adjusted based on total volume, then low flows, storm flows, and finally seasonal flows. Suggested criteria for each model performance variables were referenced from the previous research. For the calibration period, all the HSPEXP model performance criteria were satisfied while two criteria were slightly violated for the validation period.

농촌유역의 수질예측을 위한 BASINS의 적용 - HSPF모형을 중심으로 - (Application of BASINS for the water quality prediction in rural watersheds - on HSPF model -)

  • 함종화;윤춘경
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2001년도 학술발표회 발표논문집
    • /
    • pp.403-407
    • /
    • 2001
  • For the water quality management of stream and lake, it is important to estimate and control nonpoint source loading to meet the water quality standard. So, integrated watershed management is required. BASINS is a multipurpose environmental analysis system for use by regional, state, and local agencies in performing watershed and water quality based studies. BASINS was developed by the USEPA to facilitate examination of environmental information, to support analysis of environmental systems and to provide a framework for examining management alternatives. BASINS contains HSPF which is one of the watershed runoff model. By using HSPF, nonpoint source loading from upper stream watershed was estimated. As a result, the simulated runoff was in a good agreement with the observed data and indicated reasonable applicability for whole watershed.

  • PDF

BASINS/WinHSPF를 이용한 남한강 상류 유역의 비점오염원 저감효율평가 (A Study on BASINS/WinHSPF for Evaluation of Non-point Source Reduction Efficiency in the Upstream of Nam-Han River Watershed)

  • 윤춘경;신아현;정광욱;장재호
    • 한국물환경학회지
    • /
    • 제23권6호
    • /
    • pp.951-960
    • /
    • 2007
  • Window interface to Hydrological Simulation Program-FORTRAN (WinHSPF) developed by the United States Environmental Protection Agency (EPA) was applied to the upstream of Nam-Han river watershed to examine its applicability for loading estimates in watershed scale and to evaluate non-point source control scenarios using BMPRAC in WinHSPF. The WinHSPF model was calibrated and verified for water flow using Ministry of Construction and Transportation (MOCT, 3 stations, 2003~2005) and water qualities using Ministry of Environment (MOE, 5 station, 2000~2006). Water flow and water quality simulation results were also satisfactory over the total simulation period. But outliers were occurred in the time series data of TN and TP at some regions and periods. Therefore, it required more profit calibration process for more various parameters. As a result, all the study was performed within the expectation considering the complexity of the watershed, pollutant sources and land uses intermixed in the watershed. The estimated pollutant load for annual average about $BOD_5$, T-N and T-P respectively. Nonpoint source loading had a great portion of total pollutant loading, about 86.5~95.2%. In WinHSPF, BMPRAC was applied to evaluate non-point source control scenarios (constructed wetland, wet detention ponds and infiltration basins). All the scenarios showed efficiency of non-point source removal. Overall, the HSPF model is adequate for simulating watersheds characteristics, and its application is recommended for watershed management and evaluation of best management practices.

BASINS/HSPF 모델을 이용한 화성호 수질보전을 위한 상류 유역 수질개선방안 연구 (Watershed Management Measures for Water Quality Conservation of the Hwaseong Reservoir using BASINS/HSPF Model)

  • 강형식;장재호
    • 한국물환경학회지
    • /
    • 제29권1호
    • /
    • pp.36-44
    • /
    • 2013
  • HSPF model based on BASINS was applied to analyze effects of watershed management measures for water quality conservation in the Hwaseong Reservoir watershed. The model was calibrated against the field measurements of meteorological data, streamflow and water qualities ($BOD_5$, T-N, T-P) at each observatory for 4 years (2007-2010). The water quality characteristics of inflow streams were evaluated. The 4 scenarios for the water quality improvement were applied to inflow streams and critical area from water pollution based on previous researches. The reduction efficiency of point and non-point sources in inflow streams was evaluated with each scenario. The results demonstrate that the expansion of advanced treatment system within wastewater treatment plants (WWTPs) and construction of pond-wetlands would be great effective management measures. In order to satisfactory the target water quality of reservoir, the measures which can control both point source and non-point source pollutants should be implemented in the watershed.

CALIBRATION AND VALIDATION OF THE HSPF MODEL ON AN URBANIZING WATERSHED IN VIRGINIA, USA

  • Im, Sang-Jun;Brannan, Kevin-M.;Mostaghimi, Saied
    • Water Engineering Research
    • /
    • 제4권3호
    • /
    • pp.141-154
    • /
    • 2003
  • Nonpoint source pollutants from agriculture are identified as one of the main causes of water quality degradation in the United States. The Hydrological Simulation Program-Fortran (HSPF) was used to simulate runoff, nitrogen, and sediment loads from an urbanizing watershed; the Polecat Creek watershed located in Virginia. Model parameters related to hydrology and water quality were calibrated and validated using observed hydrologic and water quality data collected at the watershed outlet and at several sub-watershed outlets. A comparison of measured and simulated monthly runoff at the outlet of the watershed resulted in a correlation coefficient of 0.94 for the calibration period and 0.74 for the validation period. The annual observed and simulated sediment loads for the calibration period were 220.9 kg/ha and 201.5 kg/ha, respectively. The differences for annual nitrate nitrogen ($NO_3$) loads between the observed and simulated values at the outlet of the watershed were 5.1% and 42.1% for the calibration and validation periods, respectively. The corresponding values for total Kjeldahl nitrogen (TKN) were 60.9% and 40.7%, respectively. Based on the simulation results, the calibrated HSPF input parameters were considered to adequately represent the Polecat Creek watershed.

  • PDF

HSPF 모형을 이용한 옥동천 유역의 유달율 분석 (Pollutant Delivery Ratio of Okdong-cheon Watershed Using HSPF Model)

  • 이현지;김계웅;송정헌;이도길;이한필;강문성
    • 한국농공학회논문집
    • /
    • 제61권1호
    • /
    • pp.9-20
    • /
    • 2019
  • The primary objective of this study was to analyze the delivery ratio using Hydrological Simulation Program - Fortran (HSPF) in Okdong-cheon watershed. Model parameters related to hydrology and water quality were calibrated and validated by comparing model predictions with the 8-day interval filed data collected for ten years from the Korea Ministry of Environment. The results indicated that hydrology and water quality parameters appeared to be reasonably comparable to the field data. The pollutant delivery loads of the watershed in 2015 were simulated using the HSPF model. The delivery ratios of each subwatershed were also estimated by the simple ratio calculation of pollutant discharge load and pollutant delivery load. Coefficients of the regression equation between the delivery ratio and specific discharge were also computed using the delivery ratio. Based on the results, multiple regression analysis was performed using the discharge and the physical characteristics of the subwatershed such as the area. The equation of delivery ratio derived in this study is only for the Okdong-cheon watershed, so the larger studies are needed to apply the findings to other watersheds.

HSPF-PEST를 이용한 불연속 실측치 자동보정 (Automatic Calibration for Noncontinuous Observed Data using HSPF-PEST)

  • 전지홍;이새봄
    • 한국농공학회논문집
    • /
    • 제54권6호
    • /
    • pp.111-119
    • /
    • 2012
  • Applicability of 8 day interval flow data for the calibration of hydrologic model was evaluated using Hydrological Simulation Program-Fortran (HSPF) at Kyungan watershed. The 8 day interval flow monitored by Ministry of Environment located at upstream was calibrated and periodically validated during 2004-2008. And continuous daily flow monitored by Ministry of Construction & Transportation (MOCT) and located at the mouth was compared with daily simulated data during 2004-2007 as spatial validation. Automatic calibration tool which is Model-Independent Parameter Estimation & Uncertainty Analysis (PEST) was applied for HSPF calibration procedure. The model efficiencies for calibration and periodic validation were 0.63 and 0.88, and model performances were fair and very good, respectively, based on criteria of calibration tolerances. Continuous daily stream flow at the mouth of Kyungan watershed were good agreement with observed continuous daily stream flow with showing 0.63 NS value. The PEST program is very useful tool for HSPF hydrologic calibration using non-continuous daily stream flow as well as continuous daily stream flow. The 8 day interval flow data monitored by MOE could be used to calibrate hydrologic model if the continuous daily stream flow is unavailable.