• Title/Summary/Keyword: Watershed management practices

Search Result 125, Processing Time 0.028 seconds

Study on the Management of Doam Dam Operation by the Analysis of Suspended Solids Behavior in the lake (호내 부유물질 거동 분석을 통한 도암댐 운영 방안에 관한 연구)

  • Yeom, Bo-Min;Lee, Hye Won;Moon, Hee-Il;Yun, Dong-Gu;Choi, Jung Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.6
    • /
    • pp.470-480
    • /
    • 2019
  • The Doam lake watershed was designated as a non-point pollution management area in 2007 to improve water quality based on watershed management implementation. There have been studies of non-point source reduction with respect to the watershed management impacting the pollutant transport of the reservoir. However, a little attention has been focused on the impact of water quality improvement by the management of the dam operation or the guidelines on the dam operation. In this study, the impact of in-lake management practices combined with watershed management is analyzed, and the appropriate guidelines on the operation of the dam are suggested. The integrated modeling system by coupling with the watershed model (HSPF) and reservoir water quality model (CE-QUAL-W2) was applied for analyzing the impact of water quality management practices. A scenario implemented with sedimentation basin and suspended matter barrier showed decrease in SS concentration up to 4.6%. The SS concentration increased in the scenarios adjusting withdrawal location from EL.673 m to the upper direction(EL.683 m and EL.688 m). The water quality was comparably high when the scenario implemented all in-lake practices with water intake at EL.673 m. However, there was improvement in water quality when the height of the water intake was moved to EL.688 m during the summer by preventing sediments inflow after the rainfall. Therefore, to manage water quality of the Doam lake, it is essential to control the water quality by modulating the height of water intake through consistent turbidity monitoring during rainfall.

Comparing Water Management Categories of Green Building Rating Systems for Development of Evaluation Criteria of Watersheds (유역 평가 기준 개발을 위한 그린빌딩 평가 시스템의 물관리 관련 항목 비교 연구)

  • Idrees, Muhammad Bilal;Lee, Jin-Young;Ahn, Jae-Hyun;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.1013-1020
    • /
    • 2018
  • With the rapid industrialization and increase in population, more and more people are moving to live in cities. This urbanization trend is resulting in increased construction and development activities which associates with escalation of impervious surface. This in turn causes problems like groundwater depletion, higher flood peaks, and increased rate of soil loss from the watershed. Watershed management projects are being implemented around the globe concerning with the application of soil and water resources conservation practices. It is desirable that an entire watershed be evaluated based on soil and water conservation practices applied. In this study, water management categories of green building rating systems (GBRS) of South Korea, Taiwan, and the Philippines were discussed. The water management practices rating criteria of G-SEED (South Korea), BERDE (Philippines), and EEWH (Taiwan) were explored and compared. The insights of this study are expected to be projected to establish a comprehensive rating system for the evaluation of watersheds. The quantification of watershed management practices will help future planners to identify areas of potential water-related risks and counter the hazards more effectively.

Decision of Critical Area Due to NPS Pollutant Loadings from Kyongan Stream Watershed using BASINS-SWAT (BASINS-SWAT 모델을 이용한 경안천 유역의 비점원 오염배출 중점관리 대상지역 결정)

  • Jang, Jae-Ho;Yoon, Chung-Gyeong;Jung, Kwang-Wook;Son, Yeung-Kwon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.5
    • /
    • pp.69-78
    • /
    • 2009
  • In order to improve water quality of upper watershed of Paldang reservoir, it is necessary to evaluate non-point source pollution loads and identify critical watershed pollution sources. A GIS based Soil and Water Assessment Tool was applied to evaluate model application and reliability, estimate NPS pollution load, identify critical watershed by NPS pollution sources, and suggest various best management practices for Kyongan Stream watershed. Yearly NPS pollution loads were estimated 30.0% SS, 60.1% TN and 35.4% TP, respectably. The watershed pollution load is mainly decided by precipitation condition and SS and nutrients load have a significant regression relationship. Based on 10-year average yearly NPS pollution load, critical sub-watersheds were identified. The No. 5 and 17 which have lots of relatively intensive agricultural fields and scattered industrial area were vary critical sub-watersheds and under more intensive pollution load. In order to control critical watershed, watershed best management practices such as scientific fertilizer, contour farming and parallel terrace, transferring the sloppy farmland to grass or forest and constructing a buffer zone, and constructing wetlands and retention ponds will be applied. Overall the SWAT model can be efficiently used for identification of critical sub-watersheds in order to develop a priority watershed management plan to reduce water pollutions.

Investigating the Impact of Best Management Practices on Nonpoint Source Pollution from Agricultural Lands

  • ;Saied Mostaghimi
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.E
    • /
    • pp.1-19
    • /
    • 1990
  • Abstract Over the last several decades, crop production in the United States increased largely due to the extensive use of animal waste and fertilizers as plant nutrient supplements, and pesticides for crops pests and weed control. Without the application of animal waste best management, the use of animal waste can result in nonpoint source pollution from agricultural land area. In order to increase nutrient levels and decrease contamination from agricultural lands, nonpoint source pollution is responsible for water quality degradation. Nonpoint source pollutants such as animal waste, ferilizers, and pesticides are transported primarily through runoff from agricultural areas. Nutrients, primarily nitrogen and phosphorus, can be a major water quality problem because they cause eutrophic algae growth. In 1985, it was presented that Watershed/Water Quality Monitoring for Evaluation BMP Effectiveness was implemented for Nomini Creek Watershed, located in Westmoreland County, Virginia. The watershed is predominantly agricultural and has an aerial extent of 1505 ha of land, with 43% under cropland, 54% under woodland, and 3% as homestead and roads. Rainfall data was collected at the watershed from raingages located at sites PNI through PN 7. Streams at stations QN I and QN2 were being measured with V-notch weirs. Water levels at the stream was measured using an FW-l Belfort (Friez FWl). The water quality monitoring system was designed to provide comprehensive assessment of the quality of storm runoff and baseflow as influenced by changes in landuse, agronomic, and cultural practices ill the watershed. As this study was concerned with the Nomini Creek Watershed, the separation of storm runoff and baseflow measured at QNI and QN2 was given by the master depletion curve method, and the loadings of baseflow and storm runoff for TN (Total Nitrogen) and TP (Total Phosphorus) were analyzed from 1987 through 1989. The results were studied for the best management practices to reduce contamination and loss of nutrients, (e.g., total nitrogen and total phosphorus) by nonpoint source pollution from agricultural lands.

  • PDF

Application and Effectiveness Analysis of SWAT Filter Strip in Golji Watershed (골지천 유역의 최적관리기법 적용에 따른 수질개선효과 분석)

  • Park, Youn Shik;Kwon, Jae Hyouk
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.1
    • /
    • pp.30-36
    • /
    • 2014
  • BACKGROUND: Best management practices are often implemented to control nonpoint source pollutants. Best management practices need to be simulated and analyzed for effective Best management practices implementations. Filter strip is one of effective Best management practices in agricultural areas. METHODS AND RESULTS: Soil and Water Assessment Tool model was selected to explore the effectiveness of filter strip to control total phosphorous in Golji watershed. Soil and Water Assessment Tool model was calibrated for flow and total phosphorous by Sequential Uncertainty Fittin ver.2 algorithm provided in Soil and Water Assessment Tool-Calibration and Uncertainty Procedures. Three scenarios defined by filter strip width were applied. The filter strip width of 5 m was able to reduce the most amount of total phosphorous. In other words, the total phosphorous reduction by filter strip of 5 m was 28.0%, while the reduction was 17.5% by filter strip of 1 m. However, the reduction per unit filter strip width were 17.4%, 8.0%, and 4.5% for 1 m, 3 m, and 5 m of filter strips, respectively. CONCLUSION: Best management practices need to be simulated and analyzed so that the BMP scenario can be cost-effective. A large size of BMP might be able to control large amount of pollutants, however it would not be indicated as a cost-effective strategy.

Evaluation and Estimation of Sediment Yield under Various Slope Scenarios at Jawoon-ri using WEPP Watershed Model (WEPP Watershed Version을 이용한 홍천군 자운리 농경지의 경사도에 따른 토양유실량 평가)

  • Choi, Jae-Wan;Lee, Jae-Woon;Lee, Yeoul-Jae;Hyun, Geun-Woo;Lim, Kyoung-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.693-697
    • /
    • 2009
  • Physically-based WEPP watershed version was applied to a watershed, located at Jawoon-ri, Gangwon with very detailed rainfall data, rather than daily rainfall data. Then it was validated with measured sediment data collected at the sediment settling ponds and through overland flow. The $R^2$ and the EI for runoff comparisons were 0.88 and 0.91, respectively. For sediment comparisons, the $R^2$ and the EI values were 0.95 and 0.91. Since the WEPP provides higher accuracies in predicting runoff and sediment yield from the study watershed, various slope scenarios (2%, 3%, 5.5%, 8%, 10%, 13%, 15%, 18%, 20%, 23%, 25%, 28%, 30%) were made and simulated sediment yield values were analyzed to develop appropriate soil erosion management practices. It was found that soil erosion increase linearly with increase in slope of the field in the watershed. However, the soil erosion increases dramatically with the slope of 20% or higher. Therefore special care should be taken for the agricultural field with higher slope of 20% or higher. As shown in this study, the WEPP watershed version is suitable model to predict soil erosion where torrential rainfall events are causing significant amount of soil loss from the field and it can also be used to develop site-specific best management practices.

  • PDF

Characteristics of Nutrient Export from Paddy Rice Fields with Irrigation Practices (관개수원에 따른 논에서의 영양물질 배출 특성)

  • Hwang, Ha-Sun;Kong, Dong Soo;Shin, Dong-Suk;Jeon, Ji-Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.597-602
    • /
    • 2004
  • Field experimental study was performed to examine characteristics of nutrient export from paddy rice fields with irrigation practices. Experimental fields with surface-water and ground-water irrigation were monitored and analyzed during rice culture period. The water balance showed that outflow generally balanced the inflow showing that about half (58~68%) of total outflow was lost by surface drainage. Water and nutrient export are more in surface-water irrigation paddy than in ground-water irrigation paddy. The reasons might be more irrigation water available and easy to use in surface-water irrigation. If irrigation water reduced, it could result in reduction of nutrient export in paddy rice fields, which can save water and protect water quality. However, deviation from conventional standard practices might affect the rice yield and further investigations are necessary.

Evaluation and improvement of forest watershed management projects in Korea

  • Rhee, Hakjun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.885-901
    • /
    • 2020
  • A forest watershed management project was introduced in 2004 to develop ecologically sound forest watersheds. It includes landslide prevention and erosion control, water resource management, landscape development, and forest resource management. However, it has been managed fragmentarily and inefficiently, far from the original intents. This study investigated current status, problems, and improvement measures of the project. Literature reviews were conducted on forest watershed management in Korea and other countries, and surveys were conducted on 201 erosion control experts. When introduced, the forest watershed management project was well planned and implemented as intended. It later turned to focus only on disaster prevention such as erosion control dams and stream conservation measures. The survey results showed that a majority (89% and 86%) of surveyees wanted increases in the project period and budget. They also responded that conflicts with local residents (51%) and determining project locations (32%) were the most difficult tasks when implementing the projects, and only 36% kept project records. To plan and implement the projects as intended, the following suggestions should be considered: (1) establishment of a solid legal foundation and improvement of the erosion control practices law; (2) increase in the project period (from 1 to 2 - 3 years) and budget; (3) development of a manual for project site selection and guidelines; (4) monitoring and systematic information management; and (5) development of spatial analysis tools for watershed analysis and management.

Direct Runoff Reduction Analysis and Application Feasibility Evaluation of Vegetation-type Facilities (식생형시설의 직접유출량 저감 효과분석 및 적용 방법 타당성 검토)

  • Hanyong Lee;Won Hee Woo;Youn Shik Park
    • Journal of Korean Society of Rural Planning
    • /
    • v.30 no.2
    • /
    • pp.69-77
    • /
    • 2024
  • As impervious area increases due to urbanization, rainfall on the impervious area does not infiltrate into the ground, and stormwater drains quickly. Low impact development (LID) practices have been suggested as alternatives to infiltrate and store water in soil layers. The practices in South Korea is applied to urban development projects, urban renewal projects, urban regeneration projects, etc., it is required to perform literature research, watershed survey, soil quality, etc. for the LID practices implementation. Prior to the LID implementation at fields, there is a need to simulate its' effect on watershed hydrology, and Storm Water Management Model (SWMM) provides an opportunity to simulate LID practices. The LIDs applied in South Korea are infiltration-based practices, vegetation-based practices, rainwater-harvesting practices, etc. Vegetation-based practices includes bio-retention cell and rain garden, bio-retention cells are mostly employed in the model, adjusting the model parameters to simulate various practices. The bio-retention cell requires inputs regarding surface layer, soil layer, and drain layer, but the inputs for the drain layer are applied without sufficient examination, while the model parameters or inputs are somewhat influential to the practice effects. Thus, the approach to simulate vegetation-based LID practices in SWMM uses was explored and suggested for better LID simulation in South Korea.

Evaluation of the Impacts of Water Quality Management in Kyongan Stream Watershed using SWAT Model (SWAT 모델을 이용한 경안천 유역의 수질관리 영향 평가)

  • Jang, Jae-Ho;Yoon, Chun-Gyeong;Jung, Kwang-Wook;Kim, Hyung-Chul
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.387-398
    • /
    • 2010
  • SWAT model would be applied to evaluate the pollutant removal capacity with various best management practices (BMPs) in Kyongan stream watershed which plays an important role in water quality conservation and improvement of Paldang reservoir. The methods for the representation of various BMPs scenarios with SWAT is developed and evaluated. Riparian buffer strip, agricultural conservation practices to reduce fertilizer, sediment, and nutrients occurring from farm field (Grassed swale, Contour farming/Parallel terrace, Field border, Farm retention pond, Grade stabilization structure), and washland such as wetland and pond to extend detention and improve water quality are represented in SWAT. And to represent the expansion of existing Waste Water Treatment Plants (WWTPs) in Soil and Water Assessment Tool (SWAT), reduction effect for point source pollutants was simulated. As the result of simulation, the removal rates of SS, TN, TP from scenarios of Kyongan stream watershed are the average annual SS yield by 5.2% to 69.2%, the average annual TN yield by 0.5% to 26.3%, and the average annual TP yield by 1.3% to 32.5%, respectively. This study has demonstrated that the SWAT is a very reliable and useful water quality and quantity assessment tool, and the BMPs representation in SWAT for watershed management is able to effectively simulate in Kyongan Stream watershed.