• 제목/요약/키워드: Watershed management model

검색결과 486건 처리시간 0.031초

농촌 소유역 수환경 개선을 위한 유역관리 협의체 구성방안 - 함평천 사례를 중심으로 - (Framework of Watershed Management Organization Consortium for Water Environment Improvement of Small Rural Watershed)

  • 이기완;김영주;윤광식
    • 농촌계획
    • /
    • 제11권4호
    • /
    • pp.59-65
    • /
    • 2005
  • Proper management of small rural watershed is important since it does affect water quality improvement of larger scale watershed. Therefore, effective small watershed management guideline including participatory program of local people is required to achieve water environment improvement. Feasibility of water quality goal, short and long-term watershed management plan and funding sources were investigated by field monitoring of Hampyungchun watershed which has characteristics of rural stream, and literature review. The relevant parties and their roles fer watershed management were identified and suggested. A hybrid model, that is mixture of government driven model and NGO model, is recommended for watershed management organization in this study.

유역모형을 이용한 유량조건별 배출계수 산정 및 활용방안 연구 (Study on Estimation and Application of Discharge Coefficient about Nonpoint Source Pollutants using Watershed Model)

  • 황하선;이한필;박지형;김용석;이성준;안기홍
    • 한국물환경학회지
    • /
    • 제31권6호
    • /
    • pp.653-664
    • /
    • 2015
  • TPLMS (Total water pollutant load management system) that is the most powerful water-quality protection program have been implemented since 2004. In the implementation of TPLMS, target water-quality and permissible discharged load from each unit watershed can be decided by water-quality modeling. And NPS (Non-point sources) discharge coefficients associated with certain (standard) flow are used on estimation of input data for model. National Institute of Environmental Research (NIER) recommend NPS discharge coefficients as 0.15 (Q275) and 0.50 (Q185) in common for whole watershed in Korea. But, uniform coefficient is difficult to reflect various NPS characteristics of individual watershed. Monthly NPS discharge coefficients were predicted and estimated using surface flow and water-quality from HSPF watershed model in this study. Those coefficients were plotted in flow duration curve of study area (Palger stream and Geumho C watershed) with monthly average flow. Linear regression analysis was performed about NPS discharge coefficients of BOD, T-N and T-P associated with flow, and R2 of regression were distributed in 0.893~0.930 (Palger stream) and 0.939~0.959 (Geumho C). NPS Discharge coefficient through regression can be estimated flexibly according to flow, and be considered characteristics of watershed with watershed model.

최적화 모델을 이용한 경제적인 총량관리 할당기법 연구 (The Allocation Methods for Economical Efficiency Using an Optimized Model)

  • 최인욱;신동석;김홍태;박재홍;안기홍;김용석
    • 한국물환경학회지
    • /
    • 제31권3호
    • /
    • pp.295-303
    • /
    • 2015
  • In Korea, Total Maximum Daily Loads(TMDLs) has been enforced to restore and manage water quality in the watersheds. However, some assesment of implementation plan of TMDLs showed that the achievement of the target water quality is not related to the proper allocation loads because difference of flow duration interval. In the United States, the discharge loads are determined by water quality modeling considering standard flow conditions according to purpose. Therefore, this study tried to develop the allocation method considering economical efficiency using water quality model. For this purpose, several allocation methods being used in the management of TMDLs is investigated and develope an allocation criteria considering regional equality and uniformity. Since WARMF(Watershed Analysis Risk Management Framework) model can simulate the time varying behavior of a system and the various water quality variables, it was selected for a decision support system in this study. This model showed fairly good performance by adequately simulating observed discharge and water quality in Miho watershed. Furthermore, the scenario simulation results showed that the effect of annual average water quality improvement to remove 1kg BOD is more than 25 times, even if point pollutants treatment facility is six times more expensive to operate than non-point pollutants treatment facility.

수질오염총량관리를 위한 유역모형의 유달 과정 재현방안 연구 (Study on Representation of Pollutants Delivery Process using Watershed Model)

  • 황하선;이한필;이성준;안기홍;박지형;김용석
    • 한국물환경학회지
    • /
    • 제32권6호
    • /
    • pp.589-599
    • /
    • 2016
  • Implemented since 2004, TPLC (Total Pollution Load Control) is the most powerful water-quality protection program. Recently, uncertainty of prediction using steady state model increased due to changing water environments, and necessity of a dynamic state model, especially the watershed model, gained importance. For application of watershed model on TPLC, it needs to be feasible to adjust the relationship (mass-balance) between discharged loads estimated by technical guidance, and arrived loads based on observed data at the watershed outlet. However, at HSPF, simulation is performed as a semi-distributed model (lumped model) in a sub-basin. Therefore, if the estimated discharged loads from individual pollution source is directly entered as the point source data into the RCHRES module (without delivery ratio), the pollutant load is not reduced properly until it reaches the outlet of the sub-basin. The hypothetic RCHRES generated using the HSPF BMP Reach Toolkit was applied to solve this problem (although this is not the original application of Reach Toolkit). It was observed that the impact of discharged load according to spatial distribution of pollution sources in a sub-basin, could be expressed by multi-segmentation of the hypothetical RCHRES. Thus, the discharged pollutant load could be adjusted easily by modification of the infiltration rate or characteristics of flow control devices.

화성호 유역의 수질관리를 위한 유역모델링 연구 (Watershed Modeling Research for Receiving Water Quality Management in Hwaseong Reservoir Watershed)

  • 장재호;강형식;정광욱
    • 한국물환경학회지
    • /
    • 제28권6호
    • /
    • pp.819-832
    • /
    • 2012
  • HSPF model based on BASINS was applied for the Hwaseong Reservoir watershed (HRW) to evaluate the feasibility of water quality management. The watershed was divided into 45 sub-basins considering various watershed environment. Streamflow was calibrated based on the measured meteorological data, discharge data of treatment plants and observed streamflow data for 2010 year. Then the model was calibrated against the field measurements of water qualities, including BOD, T-N and T-P. In most cases, there were reasonable agreements between observed and predicted data. The validated model was used to analyze the characterization of pollutant load from study area. As a result, Non-point source pollutant loads during the rainy season was about 66~78% of total loads. In rainy-season, water quality parameters depended on precipitation and pollutant loads patterns, but their concentration were not necessarily high during the rainy season, and showed a decreasing trend with increasing water flow. As another result of evaluation for load duration curves, in order to improve water qualities to the satisfactory level, the watershed managements considering both time-variant and pollution sources must be required in the HRW. Overall, it was found that the model could be used conveniently to assess watershed characteristics and pollutant loads in watershed scale.

Application of Remotely Sensed Data and Geographic Information System in Watershed Management Planning in Imha, Korea

  • CHAE Hyo-Sok;LEE Geun-Sang;KIM Tae-Joon;KOH Deuk-Koo
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.361-364
    • /
    • 2005
  • The use of remotely sensed data and geographic information system (GIS) to develop conservation-oriented watershed management strategies on Imha Dam, Korea, is presented. The change of land use for study area was analyzed using multi-temporal Landsat imagery. A soil loss model was executed within a GIS environment to evaluate watershed management strategies in terms of soil loss. In general, remotely sensed data provide efficient means of generating the input data required for the soil loss model. Also, GIS allowed for easy assessment of the relative erosion hazard over the watershed under the different land use change options. The soil loss model predicted substantial declines in soil loss under conservation-oriented land management compared to current land management for Imha Dam. The results of this study indicate that soil loss potential (5,782,829 ton/yr) on Imha Dam in 2003 is approximately 1.27 times higher than that (4,557,151 ton/yr) in 1989. This study represents the first attempt in the application of GIS technology to watershed conservation planning for Imha Dam. The procedures developed will contribute to the evolution of a decision support system to guide the land planning and dam management in Imha Dam.

  • PDF

유역과 담수호를 연계한 담수호 수질관리 시스템 개발 및 적용 (Development and Application of Freshwater Lake Water Quality Management System(ELAQUM) through the Linkage of Watershed and Freshwater Lake)

  • 김선주;김성준;김필식
    • 한국농공학회지
    • /
    • 제44권6호
    • /
    • pp.124-136
    • /
    • 2002
  • A freshwater lake water quality management system(FLAQUM) was developed to help regional manager for the water quality of a rural basin. The integrated user interface system FLAQUM written in Visual Basic, includes three subsystems such as a database management system, basin pollutant loads simulation model using SWMM model and freshwater lake water quality simulation model using WASP5 model. Pollutant load simulation model was applied to simulate the discharge and pollutant loading from the watershed, and freshwater lake water quality model was applied to analyze the changes in water quality with respect to watershed pollutant loads, and this model could be used in planning to control watershed pollutant source for water quality management. Database management system was constructed fur all input and output data processing, and it can be used to analyze statistical characteristics using constructed data. Results are displayed both graph and text for convenience of user. The results of FLAQUM application to Boryeong freshwater lake showed that the lake was in eutrophic condition. The major contribution of pollution comes from tributary No.1 and No.4, which have a large number of livestock farms. Therefore, water quality management must be focused on appropriate management of the livestock farming in the two breanchs.

BASINS-SWAT 모델을 이용한 경안천 유역의 비점원 오염배출 중점관리 대상지역 결정 (Decision of Critical Area Due to NPS Pollutant Loadings from Kyongan Stream Watershed using BASINS-SWAT)

  • 장재호;윤춘경;정광욱;손영권
    • 한국농공학회논문집
    • /
    • 제51권5호
    • /
    • pp.69-78
    • /
    • 2009
  • In order to improve water quality of upper watershed of Paldang reservoir, it is necessary to evaluate non-point source pollution loads and identify critical watershed pollution sources. A GIS based Soil and Water Assessment Tool was applied to evaluate model application and reliability, estimate NPS pollution load, identify critical watershed by NPS pollution sources, and suggest various best management practices for Kyongan Stream watershed. Yearly NPS pollution loads were estimated 30.0% SS, 60.1% TN and 35.4% TP, respectably. The watershed pollution load is mainly decided by precipitation condition and SS and nutrients load have a significant regression relationship. Based on 10-year average yearly NPS pollution load, critical sub-watersheds were identified. The No. 5 and 17 which have lots of relatively intensive agricultural fields and scattered industrial area were vary critical sub-watersheds and under more intensive pollution load. In order to control critical watershed, watershed best management practices such as scientific fertilizer, contour farming and parallel terrace, transferring the sloppy farmland to grass or forest and constructing a buffer zone, and constructing wetlands and retention ponds will be applied. Overall the SWAT model can be efficiently used for identification of critical sub-watersheds in order to develop a priority watershed management plan to reduce water pollutions.

농업 소류역으로부터의 토양침식 및 유사량 시산을 위한 전산모의 모델 (I) (Digital simulation model for soil erosion and Sediment Yield from Small Agricultural Watersheds(I))

  • 권순국
    • 한국농공학회지
    • /
    • 제22권4호
    • /
    • pp.108-114
    • /
    • 1980
  • A deterministic conceptual erosion model which simulates detachment, entrainment, transport and deposition of eroded soil particles by rainfall impact and flowing water is presented. Both upland and channel phases of sediment yield are incorporated into the erosion model. The algorithms for the soil erosion and sedimentation processes including land and crop management effects are taken from the literature and then solved using a digital computer. The erosion model is used in conjunction with the modified Kentucky Watershed Model which simulates the hydrologic characteristics from watershed data. The two models are linked together by using the appropriate computer code. Calibrations for both the watershed and erosion model parameters are made by comparing the simulated results with actual field measurements in the Four Mile Creek watershed near Traer, Iowa using 1976 and 1977 water year data. Two water years, 1970 and 1978 are used as test years for model verification. There is good agreement between the mean daily simulated and recorded streamflow and between the simulated and recorded suspended sediment load except few partial differences. The following conclusions were drawn from the results after testing the watershed and erosion model. 1. The watershed and erosion model is a deterministic lumped parameter model, and is capable of simulating the daily mean streamflow and suspended sediment load within a 20 percent error, when the correct watershed and erosion parameters are supplied. 2. It is found that soil erosion is sensitive to errors in simulation of occurrence and intensity of precipitation and of overland flow. Therefore, representative precipitation data and a watershed model which provides an accurate simulation of soil moisture and resulting overland flow are essential for the accurate simulation of soil erosion and subsequent sediment transport prediction. 3. Erroneous prediction of snowmelt in terms of time and magnitute in conjunction with The frozen ground could be the reason for the poor simulation of streamflow as well as sediment yield in the snowmelt period. More elaborate and accurate snowmelt submodels will greatly improve accuracy. 4. Poor simulation results can be attributed to deficiencies in erosion model and to errors in the observed data such as the recorded daily streamflow and the sediment concentration. 5. Crop management and tillage operations are two major factors that have a great effect on soil erosion simulation. The erosion model attempts to evaluate the impact of crop management and tillage effects on sediment production. These effects on sediment yield appear to be somewhat equivalent to the effect of overland flow. 6. Application and testing of the watershed and erosion model on watersheds in a variety of regions with different soils and meteorological characteristics may be recommended to verify its general applicability and to detact the deficiencies of the model. Futhermore, by further modification and expansion with additional data, the watershed and erosion model developed through this study can be used as a planning tool for watershed management and for solving agricultural non-point pollution problems.

  • PDF

BASINS/HSPF 모델을 이용한 화성호 수질보전을 위한 상류 유역 수질개선방안 연구 (Watershed Management Measures for Water Quality Conservation of the Hwaseong Reservoir using BASINS/HSPF Model)

  • 강형식;장재호
    • 한국물환경학회지
    • /
    • 제29권1호
    • /
    • pp.36-44
    • /
    • 2013
  • HSPF model based on BASINS was applied to analyze effects of watershed management measures for water quality conservation in the Hwaseong Reservoir watershed. The model was calibrated against the field measurements of meteorological data, streamflow and water qualities ($BOD_5$, T-N, T-P) at each observatory for 4 years (2007-2010). The water quality characteristics of inflow streams were evaluated. The 4 scenarios for the water quality improvement were applied to inflow streams and critical area from water pollution based on previous researches. The reduction efficiency of point and non-point sources in inflow streams was evaluated with each scenario. The results demonstrate that the expansion of advanced treatment system within wastewater treatment plants (WWTPs) and construction of pond-wetlands would be great effective management measures. In order to satisfactory the target water quality of reservoir, the measures which can control both point source and non-point source pollutants should be implemented in the watershed.