• Title/Summary/Keyword: Watershed evaluation method

Search Result 134, Processing Time 0.026 seconds

Proposal of Agricultural Drought Re-evaluation Method using Long-term Groundwater Level Monitoring Data (장기 지하수위 관측자료를 활용한 농업가뭄 재평가 방안 제언)

  • Jeong, ChanDuck;Lee, ByungSun;Lee, GyuSang;Kim, JunKyum
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.4
    • /
    • pp.27-43
    • /
    • 2021
  • Since climate factors, such as precipitation, temperature, etc., show repeated patterns every year, it can be said that future changes can be predicted by analyzing past climate data. As with groundwater, seasonal variations predominate. Therefore, when a drought occurs, the groundwater level is also lowered. Thus, a change in the groundwater level can represent a drought. Like precipitation, groundwater level changes also have a high correlation with drought, so many researchers use Standard Groundwater Level Index (SGI) to which the Standard Precipitation Index (SPI) method is applied to evaluate the severity of droughts and predict drought trends. However, due to the strong interferences caused by the recent increase in groundwater use, it is difficult to represent the droughts of regions or entire watersheds by only using groundwater level change data using the SPI or SGI methods, which analyze data from one representative observation station. Therefore, if the long-term groundwater level changes of all the provinces of a watershed are analyzed, the overall trend can be shown even if there is use interference. Thus, future groundwater level changes and droughts can be more accurately predicted. Therefore, in this study, it was confirmed that the groundwater level changes in the last 5 years compared with the monthly average groundwater level changes of the monitoring wells installed before 2015 appeared similar to the drought occurrence pattern. As a result of analyzing the correlation with the water storage yields of 3,423 agricultural reservoirs that do not immediately open their sluice gates in the cases of droughts or floods, it was confirmed that the correlation was higher than 56% in the natural state. Therefore, it was concluded that it is possible to re-evaluate agricultural droughts through long-term groundwater level change analyses.

Development of a surrogate model based on temperature for estimation of evapotranspiration and its use for drought index applicability assessment (증발산 산정을 위한 온도기반의 대체모형 개발 및 가뭄지수 적용성 평가)

  • Kim, Ho-Jun;Kim, Kyoungwook;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.969-983
    • /
    • 2021
  • Evapotranspiration, one of the hydrometeorological components, is considered an important variable for water resource planning and management and is primarily used as input data for hydrological models such as water balance models. The FAO56 PM method has been recommended as a standard approach to estimate the reference evapotranspiration with relatively high accuracy. However, the FAO56 PM method is often challenging to apply because it requires considerable hydrometeorological variables. In this perspective, the Hargreaves equation has been widely adopted to estimate the reference evapotranspiration. In this study, a set of parameters of the Hargreaves equation was calibrated with relatively long-term data within a Bayesian framework. Statistical index (CC, RMSE, IoA) is used to validate the model. RMSE for monthly results reduced from 7.94 ~ 24.91 mm/month to 7.94 ~ 24.91 mm/month for the validation period. The results confirmed that the accuracy was significantly improved compared to the existing Hargreaves equation. Further, the evaporative demand drought index (EDDI) based on the evaporative demand (E0) was proposed. To confirm the effectiveness of the EDDI, this study evaluated the estimated EDDI for the recent drought events from 2014 to 2015 and 2018, along with precipitation and SPI. As a result of the evaluation of the Han-river watershed in 2018, the weekly EDDI increased to more than 2 and it was confirmed that EDDI more effectively detects the onset of drought caused by heatwaves. EDDI can be used as a drought index, particularly for heatwave-driven flash drought monitoring and along with SPI.

Assessment of Nitrogen Impaction on Watershed by Rice Cultivation (벼농사에서 질소유출이 수질에 미치는 영향평가)

  • Roh, Kee-An;Kim, Min-Kyeong;Lee, Byeong-Mo;Lee, Nam-Jong;Seo, Myung-Chul;Koh, Mun-Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.3
    • /
    • pp.270-279
    • /
    • 2005
  • It is important to understand and evaluate the environmental impacts of rice cultivation for developing environmentally-friendly agriculture because rice is main crop in Korea and rice cultivation have both functions of water pollution and purification with environmental and cultivation conditions. This paper presents the evaluation of nitrogen impact by rice cultivation on water system. A simple protocol was proposed to assess the potential amount of nitrogen outflow from paddy field and most of parameters affect on the nitrogen outflow from paddy field such as the amount of fertilizer application, water balance, the quality and quantity of irrigation water, soil properties, nitrogen turnover in the soil and cultivation method were considered. To develop the protocol, coefficients for parameters affected nitrogen turnover and outflow were gotten and summarized by comparison and analysis of all possible references related, and by additional experiments at field and laboratory. And potential amount of nitrogen input and output by water in paddy field were estimated with the protocol at the conditions of the nitrogen contents of irrigation water, amount of fertilizer application, and irrigation methods. Where irrigation water was clean, below 1.0 mg $L^{-1}$ of nitrogen concentration, rice cultivation polluted nearby watershed. At the conditions of 2.0 mg $L^{-1}$ of nitrogen concentration, 110 kg $ha^{-1}$ of nitrogen fertilizer application and flooding irrigation, rice cultivation had water pollution function, but it had water purification function with intermittent irrigation. At the conditions of 3.0 mg $L^{-1}$ of nitrogen concentration and 110 kg $ha^{-1}$ of nitrogen fertilizer application, rice cultivation had water purification function, but that had water pollution function with 120 kg $ha^{-1}$ of nitrogen application. Where irrigation water was polluted over 6.0 mg $L^{-1}$ of nitrogen, it was evaluated that rice cultivation had water purifying effect, even though the amount of nitrogen application was 120 kg $ha^{-1}$.

A Comparative Study on the Drought Indices for Drought Evaluation (가뭄평가를 위한 가뭄지수의 비교 연구)

  • Ryu, Jae-Hea;Lee, Dong-Ryul;Ahn, Jae-Hyun;Yoon, Yong-Nam
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.4 s.129
    • /
    • pp.397-410
    • /
    • 2002
  • In order to quantitatively identify historical drought conditions and to evaluate their variability, drought indices commonly used. The calculation method for the drought index based on the principal hydrological factors, such as precipitation and reservoir storage, can estimate the duration and intensity of a drought. In this study the Palmer-type formula for drought index is derived for the Nakdong River basin by analyzing the monthly rainfall and meteorological data at 21 stations. The Palmer Drought Severity Index(PDSI) is used for dry land sectors to evaluate the meteorological anomaly in terms of an index which permits time and space comparisons of drought severity. The Surface Water Supply Index(SWSI) is devised for the use in conjunction with the Palmer index to provide an objective indicator of water supply conditions in Nakdong River basin. The SWSI was designed to quantify surface water supply capability of a watershed which depends on river and reservoir water The Standardized Precipitation Index(SPI) is evaluated for various time periods of 1 to 12 months in Nakdong River basin. For the purpose of comparison between drought indices correlation coefficient was calculated between indices and appropriate SPI time period was selected as 10 months for Nakdong River basin. A comparative study is made to evaluate the relative severity of the significant droughts occurred in Nakdong River basin since 1976. It turned out that $'94{\sim}'97$ drought was the worst drought in it's severity. It is found that drought indices are very useful tools in quantitatively evaluating the severity of a drought over a river basin.

Development and evaluation of ANFIS-based conditional dam inflow prediction method using flow regime (ANFIS 기반의 유황별 조건부 댐 유입량 예측기법 개발 및 평가)

  • Moon, Geon-Ho;Kim, Seon-Ho;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.7
    • /
    • pp.607-616
    • /
    • 2018
  • Flow regime-based ANFIS Dam Inflow Prediction (FADIP) model is developed and compared with ANFIS Dam Inflow Prediction (ADIP) model in this study. The selected study area is the Chungju and Soyang multi-purpose dam watersheds in South Korea. The dam inflow, precipitation and monthly weather forecast information are used as input variables of the models. The training and validation periods of the models are 1987~2010 for Chungju and 1984~2010 for Soyang dam watershed. The testing periods for both watersheds are 2011~2016. The results of training and validation indicate that FADIP has better training ability than ADIP for predicting dam inflow in normal and low flow regimes. In the result of testing, ADIP shows low predictability of dam inflow in the low flow regime due to the model tuning on all flow regime together. However, FADIP demonstrates the improved accuracy over the entire period compared to ADIP, especially during the normal and low flow seasons. It is concluded that FADIP is valuable for the prediction of dam inflow in the case of drought years, and useful for water supply management of the multi-purpose dam.

Evaluation of Basin-Specific Water Use through Development of Water Use Assessment Index (이수평가지수 개발을 통한 유역별 물이용 특성 평가)

  • Baeck, Seung Hyub;Choi, Si Jung
    • Journal of Wetlands Research
    • /
    • v.15 no.3
    • /
    • pp.367-380
    • /
    • 2013
  • In this study, sub-indicators, and thematic mid-indexes to evaluate the water use characteristics were selected through historical data analysis and factor analysis, and consisted of the subject approach framework. And the integrated index was developed to evaluate water use characteristics of the watershed. Using developed index, the water use characteristics were assessed for 812 standard basins with the exception for North Korea using data of 1990 to 2007 from the relevant agencies. A sensitivity analysis is conducted for this study to determine the proper way through various normalization and weighting methods. To increase the objectivity of developed index, the history of the damage indicators are excluded in the analysis. In addition, in order to ensure its reliability, results from index with and without consideration of the damage history were compared. Also, the index is also applied to real data for 2008 Gangwon region to verify its field applicability. Through the validation process this index confirmed the adequacy for the indicators selection and calculation method. The results of this study were analyzed based on the spatial and time vulnerability of the basin's water use, which can be applied to various parts such as priority decision-making for water business or policy, mitigations for the vulnerable components of the basin, and supporting measures to establishment by providing relevant information about it.

Re-evaluation of Soyang Dam inflow based on modifying a simple water balance method considering evaporation (증발량을 고려한 단순 물수지 방정식 개선을 통한 소양강댐 유입량의 재평가)

  • Yoo, Jiyoung;Lee, Dong Jin;Yoo, Do-Guen;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.6
    • /
    • pp.461-469
    • /
    • 2022
  • It is very important to ensure the reliability of dam inflow data, which is critical in planning and managing the supply and demand of water resources in a basin. However, the simple water balance model sometimes results in negative inflows and does not consider the actual inflow characteristics. In this study, to address these issues, the existing water balance formula was modified by considering evaporation which is available for calculation among other outflows. The modified water balance formula was applied to the Soyang Dam. The results showed that the rate of negative inflows decreased in the re-evaluated dam inflow data and it was possible to secure consistency for the total inflow volume. In addition, investigating the water availability in the Soyang Dam watershed based on the water balance concept considering evaporation, it was found that direct water use in the human aspect was about 60%, and the indirect water use in the natural aspect was about 40%. In drought years, it was also confirmed that the proportion of indirect use of water resources increased.

Soil Depth Estimation and Prediction Model Correction for Mountain Slopes Using a Seismic Survey (탄성파 탐사를 활용한 산지사면 토심 추정 및 예측모델 보정)

  • Taeho Bong;Sangjun Im;Jung Il Seo;Dongyeob Kim;Joon Heo
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.3
    • /
    • pp.340-351
    • /
    • 2023
  • Landslides are major natural geological hazards that cause enormous property damage and human casualties annually. The vulnerability of mountainous areas to landslides is further exacerbated by the impacts of climate change. Soil depth is a crucial parameter in landslide and debris flow analysis, and plays an important role in the evaluation of watershed hydrological processes that affect slope stability. An accurate method of estimating soil depth is to directly investigate the soil strata in the field. However, this requires significant amounts of time and money; thus, numerous models for predicting soil depth have been proposed. However, they still have limitations in terms of practicality and accuracy. In this study, 71 seismic survey results were collected from domestic mountainous areas to estimate soil depth on hill slopes. Soil depth was estimated on the basis of a shear wave velocity of 700 m/s, and a database was established for slope angle, elevation, and soil depth. Consequently, the statistical characteristics of soil depth were analyzed, and the correlations between slope angle and soil depth, and between elevation and soil depth were investigated. Moreover, various soil depth prediction models based on slope angle were investigated, and corrected linear and exponential soil depth prediction models were proposed.

Analysis of effects of drought on water quality using HSPF and QUAL-MEV (HSPF 및 QUAL-MEV를 이용한 가뭄이 수질에 미치는 영향 분석)

  • Lee, Sangung;Jo, Bugeon;Kim, Young Do;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.6
    • /
    • pp.393-402
    • /
    • 2023
  • Drought, which has been increasing in frequency and magnitude due to recent abnormal weather events, poses severe challenges in various sectors. To address this issue, it is important to develop technologies for drought monitoring, forecasting, and response in order to implement effective measures and safeguard the ecological health of aquatic systems during water scarcity caused by drought. This study aimed to predict water quality fluctuations during drought periods by integrating the watershed model HSPF and the water quality model QUAL-MEV. The researchers examined the SPI and RCP 4.5 scenarios, and analyzed water quality changes based on flow rates by simulating them using the HSPF and QUAL-MEV models. The study found a strong correlation between water flow and water quality during the low flow. However, the relationship between precipitation and water quality was deemed insignificant. Moreover, the flow rate and SPI6 exhibited different trends. It was observed that the relationship with the mid- to long-term drought index was not significant when predicting changes in water quality influenced by drought. Therefore, to accurately assess the impact of drought on water quality, it is necessary to employ a short-term drought index and develop an evaluation method that considers fluctuations in flow.

A Study on Selection of Optimal Shelters according to Dam Break Scenario Based on Continuous Rainfall Event (연속호우사상기반의 댐 붕괴 시나리오에 따른 최적대피소 선정에 관한 연구)

  • Kim, Kyunghun;Lim, Jonghun;Kim, Hung Soo;Shin, Soeng Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.433-447
    • /
    • 2023
  • There is a growing demand for the stability of existing dams due to abnormal climate and the aging of dams. Emergency Action Plans (EAPs) for reservoir or dam failure only consider a single rainfall event. Therefore, this study simulates dam failure caused by continuous rainfall events, and proposes the establishment of EAP by selecting the optimal shelters. We define a mega rainfall event scenario caused by continuous rainfall events with 500-year frequency in the Chungju Dam watershed and estimate the mega flood. The mega flood event scenario is divided into two cases: scenario A represents the flooding case caused by discharge release from a dam, while scenario B is the case of a dam break. As a result of flood inundation analysis, the flooded damage area by the scenario A is 50.06 km2 and the area by the scenario B is 6.1 times of scenario A (307.45 km2). We select optimal shelters for each administrative region in the city of Chungju, which has the highest inundation rate in the urban area. Seven shelter evaluation indicators from domestic and foreign shelter selection criteria are chosen, and Analytical Hierarchy Process (AHP) method is used to evaluate the alternatives. As a result of the optimal shelter selection, the six shelters are selected and five are schools. This study considers continuous rainfall events for inundation analysis and selection of optimal shelters. Also, the results of this study could be used as a reference for establishment of the EAP.