• Title/Summary/Keyword: Watershed dividing

Search Result 22, Processing Time 0.023 seconds

Runoff Estimation Considering Dividing Watershed (유역 분할을 고려한 유출량 산정)

  • Lee, Jong-Hyeong;Yoon, Seok-Hwan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.1 s.24
    • /
    • pp.57-66
    • /
    • 2007
  • The purpose of this study is both the variation of hydrologic topographical informations extracted by using WMS and the quantitative effect of rainfalll-runoff simulation due to dividing watershed. Miho stream basin in Geum river was selected by this study. Watershed dividing method are determined by area, channel slope and channel length. Hydrological response of divided watershed using Clark method, SCS method and Snyder method was compared with actual measured flood hydrograph. As a results, area-based watershed dividing method are particularly suitable the hydrologic applications using SCS method. This study can be used as basic data for the phase of the runoff variation in Miho stream basin.

A Study of Peak Discharge Variation by Dividing Watershed (유역분할에 따른 첨두홍수량 특성에 관한 연구)

  • Park, Ki-Bum
    • Journal of Environmental Science International
    • /
    • v.15 no.4
    • /
    • pp.365-372
    • /
    • 2006
  • In this study investigated that topographical parametersestimate and calculated travel time, storage coefficient and lag time by watershed dividing 11, 8, 6 and 2. The results showed the more divide watershed, the more increase peak discharges. The results showed that Kraven-Clark-Kraven case is good simulated by compared observed data with calculated data. The sub-basin number are adequate $6{\sim}11$ for wichun and travel times compare observed data with calculated data at the younggok, to take about $18{\sim}20hr$ by simulated results but observed data shorter $8{\sim}10hr$. From this study results showed that it could be make narrow parameter estimate for observed hydrograph simulation, if more observed velocity and hydrograph. Also, as results of this study that is help to estimate parameters (arrival time, storage coefficient and lag time for Clark model.

A Study for the Efficiency to Extract Hydrologic-Topographical Parameters Using GIS (GIS를 이용한 수문지형인자 추출에 관한 효용성 연구)

  • Choi, Hyun;Ahn, Chang-Whan;Lee, Je-Yun;Han, Ho-Wook
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.937-941
    • /
    • 2007
  • For Hydrologic analysis of the river, the exact Dividing Watershed and Hydrologic-Topographical Parameters affect enormously Hydrologic analysis of the river basin. Therefore the extraction of Hydrologic-Topographical Parameters as well as Dividing Watershed are stiuied by several ways. However the definite standard of all those means are not settled. Recently GIS is applied to the field of water resources so that we can divide Watershed and calculate Hydrologic-Topographical Parameters of the targeted area easily and objective way for using DEM. Thanks to DEM, we don't have to spend much time as we did before. However other problems are generated such as the parameter value is changed by the precision of established NGIS(National Geographic Information System), etc. In this study, using GIS which is popular recently, we suggested efficient extract method of Hydrologic-Topographical Parameters SCS(Soil Conservation Service) CN(Curve Number) in watershed.

  • PDF

Application Analysis of HSPF Model Considering Watershed Scale in Hwang River Basin (황강유역에서의 유역규모를 고려한 HSPF 모형의 적용성 평가)

  • Choi, Hyun Gu;Han, Kun Yeun;Hwangbo, Hyun;Cho, Wan Hee
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.4
    • /
    • pp.509-521
    • /
    • 2011
  • The purpose of this study is to estimate overall reliability and applicability of the watershed modeling for systematic management of point and non-point sources via water quality analysis and prediction of runoff discharge within watershed. Recently, runoff characteristics and pollutant characteristics have been changing in watershed by anomaly climate and urbanization. In this study, the effects of watershed scale were analyzed in runoff and water quality modeling using HSPF. In case of correlation coefficient, its range was from 0.936 to 0.984 in case A(divided - 2 small watersheds). On the other hand, its range was form 0.840 to 0.899 in case B(united - 1 watershed). In case of Nash-Sutcliffe coefficient, its range was from 0.718 to 0.966 in case A. On the other hand, its range was from 0.441 to 0.683 in case B. As a result, it was judged that case A was more accurate than case B. Therefore, runoff and water quality modeling in minimum watershed scale that was provided data for calibration and verification was judged to be favorable in accuracy. If optimal watershed dividing and parameter optimization using PEST in HSPF with more reliable measured data are carried out, more accurate runoff and water quality modeling will be performed.

A Study about the Influence of Pollutant Load on Water Quality in a Small Stream Watershed (소하천의 오염부하량이 수질에 미치는 영향에 관한 연구)

  • Lee, Sang-Hoon;Cho, Wook-Sang
    • Journal of Environmental Impact Assessment
    • /
    • v.10 no.1
    • /
    • pp.9-19
    • /
    • 2001
  • An intensive watershed survey including water quality measurement of 6 times was carried out in order to find out the relationship between pollutant load and water quality in a small stream watershed where livestock wastewater is the main source of water pollution. The findings from the survey are as follows. 1) The number of livestock showed large disagreement among county office, myon, and insite survey. It is vital to check the data at the beginning of watershed survey. 2) The fluctuation of streamflow and water quality was so large depending on the day of measurement that it is essential to set up continuous telemetering system to get reliable data about delivery ratio of pollutants. 3) It was helpful for setting the priority of investigation to check water quality and quantity at several points along the stream after dividing the watershed into 5 drainage areas. 4) To control the livestock wastewater, especially in case of cows, it is necessary to have roof system and prevent overland flow from the ground. In case of pig farms, it is recommended to have public treatment system instead of private treatment system. The exact emission load of livestock wastewater was difficult to estimate, and requires more study.

  • PDF

A Study on Runoff Response according to Dividing Watershed. (유역분할에 따른 유출응답에 관한 연구)

  • Kim, Kyung-Tak;Choi, Yun-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.6
    • /
    • pp.911-924
    • /
    • 2003
  • Many researches have been conducting on extracting geometry data and hydrologic parameters by using GIS technique. However, there is no clear standard on those methods yet. This study examines the changing pattern of runoff responses characteristics with applying lumped model on divided watershed. WMS is used in order to divide watershed and calculate hydrologic geometry data and parameters by GIS technique. HEC-1 is adopted as a hydrologic model to establish runoff responses. The basin is divided into small watersheds, which are approximately same size. This research conducted runoff response simulation of Pyoungchang River and Wichon River Basin. Especially, research was focused on what is the most appropriate level as a divined sub-basin, and tested the effect of size of sub-basin for the runoff response simulation. The results showed the size of sub-basin was not an important factor for the simulation results after a certain size. The results of this study can be applied as an appropriate guidance to select optimal simulation size of watershed for the lumped model in a specific watershed.

An Analysis of the Outflow reduction effect of Bio-retention in Small watershed during Short-term rainfall (단기 강우 시 소규모유역에서 생태저류지의 유출 저감효과 분석)

  • Cheon, Jong-hyeon;Kim, Jae-moon;Jang, Young-su;Shin, Hyun-suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.434-442
    • /
    • 2019
  • Low Impact Development(LID) techniques has been attracting attention as a countermeasure to solve frequent flood damage in urban areas. LID is a techniques for returning to the natural hydrological cycle system by infiltrating the runoff from the impervious surface into the soil. The Bio-retention, one of the LID element technology has outflow reduction effect by reserving and infiltrating storm water runoff from watersheds. Recently, a number of studies have been carried out as interest in the reduction of storm water runoff and non-point pollutants in Bio-retention has increased. However, quantitative analysis on the outflow reduction of Bio-retention applied to small watershed is insufficient. In this study, Bio-retention model was constructed in a small watershed using K-LIDM which is capable of hydrologic analysis. When the storage capacity was increased or dividing the Bio-retention and watershed, the outflow reduction effect was 20% according to the storage capacity increase and 5~15% in the distributed Bio-retention system. The results of this analysis will be used as the basic data of future Bio-retention research related to watershed characteristics, vegetation type and soil condition.

Development of Wetershed Runoff Index for Major Control Points of Geum River Basin Using RRFS (RRFS에 의한 금강수계의 주요지점별 유역유출지표 개발)

  • Lee, Hyson-Gue;Hwang, Man-Ha;Koh, Ick-Hwan;Maeng, Seung-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.3
    • /
    • pp.140-151
    • /
    • 2007
  • In this study, we attempted to develop a watershed runoff index subject to main control points by dividing the Geum River basin into 14 sub-basins. The Yongdam multipurpose dam Daecheong multipurpose dam and Gongju gage station were selected to serve as the main control points of the Geum River basin, and the observed flow of each control point was calculated by the discharge rating curve, whereas the simulated flow was estimated using the Rainfall Runoff Forecasting System (RRFS), user-interfaced software developed by the Korea Water Corporation, based on the Streamflow Synthesis and Reservoir Regulation (SSARR) model developed by the US Army Corps of Engineers. This study consisted of the daily unit observed flow and the simulated flow of the accumulated moving average flow by daily, 5-days, 10-days, monthly, quarterly and annually, and normal monthly/annually flow. We also performed flow duration analysis for each of the accumulated moving average and the normal monthly/annually flows by unit period, and abundant flow, ordinary flow, low flow and drought flow estimated by each flow duration analysis were utilized as watershed runoff index by main control points. Further, as we determined the current flow by unit period and the normal monthly/annually flow through the drought and flood flow analysis subject to each flow we were able to develop the watershed runoff index in a system that can be used to determine the abundance and scarcity of the flow at the corresponding point.

Development of flood inundation area GIS database for Samsung-1 drainage sector, Seoul, Korea (서울 삼성 1분구에 대한 침수면적 GIS 데이터베이스 구축)

  • Oh, Minkwan;Lee, Dongryul;Kwon, Hyunhan;Kim, Dongkyun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.12
    • /
    • pp.981-993
    • /
    • 2016
  • This study explains the GIS database of flood inundation area developed for Samsung-1 Drainage Sector, Seoul, Korea. The XP-SWMM dual drainage model was developed for the study area, and the time series observed at the watershed outlet was used to obtain the watershed time of concentration and to calibrate the XP-SWMM model. The rainfall scenario was developed by dividing the 40 minute watershed time of concentration into two 20-minute time steps and then applying the gradually increasing 5 mm/hr interval rainfall intensity to each of the time step up to 200 mm/hr, which is the probable maximum precipitation of the study area. The developed rainfall scenarios was used as the input of the XP-SWMM model to obtain the database of the flood inundation area. The analysis on the developed GIS database revealed that: (1) For the same increment of the rainfall, the increase of the flooded area can be different, and this was caused by topographic characteristics and spatial formation of pipe network of the study area; (2) For the same flooded area, the spatial extent can be significantly different depending on the temporal distribution of rainfall; and (3) For the same amount of the design rainfall, the flood inundation area and the extent can be significantly different depending on the temporal distribution of rainfall.

Development of an Estimation Method for Travel Time (도달시간 산정 방법의 개발)

  • Jeong, Jong-Ho;Keum, Jong-Ho;Yoon, Yong-Nam
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.715-727
    • /
    • 2002
  • The travel time of a flood through a river reach can be estimated by dividing the river length by the mean velocity with which the flood passes downstream. It is closely related to storage constant for the watershed routing of a flood. There are so many empirical formulas available for the estimation of travel time but the results computed generally show great different depending on individual formulas. In the present study, the mean velocity data computed in the process of water surface profile computation for a probability flood through more than 100 different river reaches were collected along with the mean river bed slope of each river reach. And then, a regression analysis is made between the mean river bed slope and the mean velocity, which showed a wide scatter along the mean regression curve, which appears to be due to the different in the magnitude of probability rainfall and size of watershed area. Therefore, methods have been developed to remove the effect of these factors and generalized empirical equation is proposed to relate the mean velocity to mean river bed slope of a reach. Hence, if the mean river bed slope of a river reach is estimated from the longitudinal river profile, the mean velocity can be computed by the generalized equation along with the probability rainfall and watershed area of the river reach under consideration, which leads to the estimation of travel time through a river reach.