• Title/Summary/Keyword: Watershed characteristics

Search Result 1,023, Processing Time 0.033 seconds

The influence of anthropogenic disturbances and watershed morphological characteristics on Hg dynamics in Northern Quebec large boreal lakes

  • Moingt, M.;Lucotte, M.;Paquet, S.;Beaulne, J.S.
    • Advances in environmental research
    • /
    • v.2 no.2
    • /
    • pp.81-98
    • /
    • 2013
  • Mercury (Hg) dynamics in the boreal environment have been a subject of concern in recent decades, due to the exposure of local populations to the contaminant. Land use, because of its impact on mercury inputs, has been highlighted as a key player in the sources and eventual concentrations of the heavy metal. In order to evaluate the impact of watershed disturbances on Hg dynamics in frequently fished, large boreal lakes, we studied sediment cores retrieved at the focal point of eight large lakes of Qu$\acute{e}$bec (Canada), six with watersheds affected by land uses such as logging and/or mining, and two with pristine watersheds, considered as reference lakes. Using a Geographical Information System (GIS), we correlated the recent evolution of land uses (e.g., logging and mining activities) and morphological characteristics of the watershed (e.g., mean slope of the drainage area, vegetation cover) to total Hg concentrations (THg) in sedimentary records. In each core, THg gradually increased over recent years with maximum values between 70 and 370 ng/g, the lowest mercury concentrations corresponding to the pristine lake cores. The Hg Anthropogenic Sedimentary Enrichment Factor (ASEF) values range from 2 to 15. Surprisingly, we noticed that the presence of intense land uses in the watershed does not necessarily correspond to noticeable increases of THg in lake sediments, beyond the normal increment that can be attributed to Hg atmospheric deposition since the beginning of the industrial era. Rather, the terrestrial Hg inputs of boreal lakes appear to be influenced by watershed characteristics such as mean slopes and vegetation cover.

Characteristics of Pollutants Discharge from Hoengseong Watershed during the Dry and Rainy Seasons (횡성호 유역의 비강우시 및 강우시 오염물질 유출특성)

  • Roh, Sung-Duk;Kim, Jang-Hyun;Lee, Dae-Keun;Kim, Seon-Joo;Sohn, Byeong-Yong;Chun, Yang-Kun
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.695-705
    • /
    • 2006
  • This study was carried out to make a basic information for establishment of countermeasures against water pollution of Hoengseong watershed, accordingly we investigated the characteristics of pollutants discharge and estimated the unit loads from Hoengseong watershed. Seven sites (S1~S7) were selected for sampling and samples were taken 4 times during the dry and rainy seasons, respectively. During rainfall events, measured site mean concentration (SMC) ranges of $BOD_5$, $COD_{Mn}$, TOC, SS, Turbidity, T-N and T-P were 0.8~1.3 mg/L, 2.3~6.3 mg/L, 1.284~2.110 mg/L, 3.4~69.3 mg/L, 2.36~52.68 NTU, 1.243~1.669 mg/L and 0.025~0.070 mg/L, respectively. And the calculated annual unit loads of $BOD_{5}$, $COD_{Mn}$, SS, T-N and T-P in Hoengseong watershed were 1.327 kg/ha/yr, 7.349 kg/ha/yr, 87.075 kg/ha/yr, 1.848 kg/ha/yr and 0.103 kg/ha/yr, respectively. It was difficult to directly compare the unit loads proposed in this study with the estimated existing those. Because the unit loads in this paper were estimated not by land use types, but by complex land use of non-urban area. From the survey results, they showed that the unit loads in Hoengseong watershed were similar to those exisiting in the forest area, and showed lower than those existing in the paddy/dry field.

Analysis of Rainfall-Runoff Characteristics on Impervious Cover Changes using SWMM in an Urbanized Watershed (SWMM을 이용한 도시화유역 불투수율 변화에 따른 강우유출특성 분석)

  • Oh, Dong Geun;Chung, Se Woong;Ryu, In Gu;Kang, Moon Seong
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.61-70
    • /
    • 2010
  • The increase of impervious cover (IC) in a watershed is known as an important factor causing alteration of water cycle, deterioration of water quality and biological communities of urban streams. The study objective was to assess the impact of IC changes on the surface runoff characteristics of Kap Stream basin located in Geum river basin (Korea) using the Storm Water Management Model (SWMM). SWMM was calibrated and verified using the flow data observed at outlet of the watershed with 8 days interval in 2007 and 2008. According to the analysis of Landsat satellite imagery data every 5 years from 1975 to 2000, the IC of the watershed has linearly increased from 4.9% to 10.5% during last 25 years. The validated model was applied to simulate the runoff flow rates from the watershed with different IC rates every five years using the climate forcing data of 2007 and 2008. The simulation results indicated that the increase of IC area in the watershed has resulted in the increase of peak runoff and reduction of travel time during flood events. The flood flow ($Q_{95}$) and normal flow ($Q_{180}$) rates of Kap Stream increased with the IC rate. However, the low flow ($Q_{275}$) and drought flow ($Q_{355}$) rates showed no significant difference. Thus the subsurface flow simulation algorithm of the model needs to be revisited for better assessment of the impact of impervious cover on the long-term runoff process.

Analysis of Rainfall-Runoff Characteristic at Mountainous Watershed Using GeoWEPP and SWAT Model (GeoWEPP과 SWAT 모델을 이용한 산지 유역 강우-유출량 특성 분석)

  • Kim, Jisu;Kim, Minseok;Kim, Jin Kwan;Oh, Hyun-Joo;Woo, Choongshik
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.2
    • /
    • pp.31-44
    • /
    • 2021
  • Due to recent climate change, continuous soil loss is occurring in the mountainous watershed. The development of geographic information systems allows the spatial simulation of soil loss through hydrological models, but more researches applied to the mountain watershed areas in Korea are needed. In this study, prior to simulating the soil loss characteristics of the mountainous watershed, the field monitoring and the SWAT and GeoWEPP models were used to simulate and analyze the rainfall and runoff characteristics in the mountainous watershed area of Jirisan National Park. As a result of monitoring, runoff showed a characteristic of a rapid response as rainfall increased and decreased. In the simulation runoff results of calibrated SWAT models, R2, RMSE and NSE was 0.95, 0.03, and 0.95, respectively. The runoff simulation results of the GeoWEPP model were evaluated as 0.89, 0.30, and 0.83 for R2, RMSE, and NSE, respectively. These results, therefore, imply that the runoff simulated through SWAT and GeoWEPP models can be used to simulate soil loss. However, the results of the two models differ from the parameters and base flow of actual main channel, and further consideration is required to increase the model's accuracy.

A Landscape Ecological Classification based on Watershed Focusing Landcover Types (경관생태학적 유역관리를 위한 토지이용 유형 분류)

  • Oh, Jeong-Hak;Jung, Sung-Gwan;Kwon, Jino;Park, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.4
    • /
    • pp.22-34
    • /
    • 2007
  • The purpose of this study is to evaluate landscape characteristics of watersheds in the Nakdong River Basin for identifying the groups of watershed with similar landcover patterns by using Geographic Information System and statistical technique. According to the results based on the cluster analysis using cluster analysis tool in the ArcGIS 8.3 program, 22 sub-watersheds were classified into three types; "Forest watershed", "Agriculture watershed", and "Urban watershed". In the forest watershed that has the least potential of ecological disturbances by human, a forest management approach based on geographic conditions and coverage types, etc., should be developed to sustain the ecological and environmental functions of forest. For the agriculture watershed, environmental-friendly agricultural techniques should be performed in the particular enhancement of riparian buffer zone to the prevent direct inflow of soils, fertilizers, and other chemicals into the stream network. Finally, in the urban watershed, an environmental-friendly plan that may increase the ratio of pervious surface and amount of green-space to should be reserved.

  • PDF

A Study on the Discharged Characteristics of the Pollutants using the Empirical Equation and Factor Analysis - Case Study of the Upper and Lower Watershed of South Han River (경험식과 요인분석을 통한 오염물질 유출 특성 연구 - 남한강 상·하류 수계 주요 하천을 중심으로)

  • Park, Ji Hyoung;Sohn, Su Min;Rhew, Doug Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.905-913
    • /
    • 2011
  • This study was conducted to characterize the discharge feature of pollutant load from the upper and lower watershed influencing on the water quality of South Han River using the empirical equation and Factor Analysis. The results of regression analysis between flow rate and pollutant load were as follows. In the streams of the upper watershed of South Han river, $BOD_5$ and $COD_{Mn}$ were increased as the flow rate was increased. Also, steep increases in SS and TP were observed with positive correlation with the flow rate while change in TN was slightly shown. On the other hand, in the streams of the lower watershed of South Han river, $BOD_5$ was negatively correlated with the flow rate, being decreased with the increase in the flow rate. However, changes in $COD_{Mn}$, TN, SS, and TP showed a similar trend with those observed in the upper watershed. With Factor Analysis of the water quality and various components, it was appeared that the flow rate, SS, and TP were significantly correlated each other and they were indicated as the principal component influencing on water quality in the streams of the upper watershed. In contrast, $BOD_5$, $COD_{Mn}$ and TOC were significantly correlated each other and they were included as the principal pollution component of the streams in the lower watershed. From these results, it was conclusive that the upper watershed of South Han River was mainly affected by non point source pollutants while the lower watershed was influenced by point source pollutants from the developed areas.

Analysis of Suspended Solid Generation with Rainfall-Runoff Events in a Small Forest Watershed (산림 소유역에서 강우-유출에 따른 부유토사 발생 특성 분석)

  • Kim, Jae-Hoon;Choi, Hyung-Tae;Lim, Hong-Geun
    • Journal of Environmental Science International
    • /
    • v.24 no.12
    • /
    • pp.1617-1627
    • /
    • 2015
  • This study was carried out to investigate the characteristics of suspended solid concentration in small forest watershed, Hwacheon, Gangwondo. For five rainfall events from July 2013 to August 2013, rainfall, discharge, and suspended solid load has been measured. The results showed that the fist flush effect was observed for suspended solid in each rainfall event, sediment rating curve was obtained with $y=30.029x^{1.573}$ at rising limb and $y=12.902x^{1.8827}$ at falling limb, and EMC (event mean concentration) of suspended solid was calculated to 9.4 mg/L. EMC was compared to the values from the watershed that has various land use types and EMC from forest watershed was much lower that from the crop, paddy or low covered forest watershed.

Analysis of Flow-Weighted Mean Concentration(FWMC) Characteristics from Rural Watersheds (농업 및 산림유역의 강우유출수 유량가중평균농도 분석)

  • Shin, Min-Hwan;Shin, Yong-Chul;Heo, Sung-Gu;Lim, Kyoung-Jae;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.6
    • /
    • pp.3-9
    • /
    • 2007
  • Stream flow and water quality were measured and analyzed with respect to flow-weighted mean concentrations (FWMCs) of 21 rainfall events from a forested watershed (Forest Research Watershed: FRW) and two mixed watersheds of agriculture and forest (YuPo-Ri Watershed: YPW and WolGog-ri Watershed: WGW) located in the middle of the North Han River basin. The monitoring of each watershed was one year and conducted between 2004 and 2006. YPW showed more intensive agricultural practices than WGW where traditional practices were common. The average of the 21 FWMCs were in the order of YPF>WGW>FRW and were significantly different from each other at the level of 0.05. It was shown that the land use with intensive agricultural practices produced and discharged more NPS pollutants than that with traditional practices and forest. Specially, SS concentrations from the mixed watersheds were significantly higher than those from FRW. Influencing factors on runoff were analyzed rainfall and watershed area. And rainfall intensity was greater impact on runoff than daily rainfall. Measured water quality indices were shown positive correlations among them in general. However, no significant correlation was shown between COD and nutrients(T-N and T-P).

Watershed Management Measures for Water Quality Conservation of the Hwaseong Reservoir using BASINS/HSPF Model (BASINS/HSPF 모델을 이용한 화성호 수질보전을 위한 상류 유역 수질개선방안 연구)

  • Kang, Hyeongsik;Jang, Jae Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.1
    • /
    • pp.36-44
    • /
    • 2013
  • HSPF model based on BASINS was applied to analyze effects of watershed management measures for water quality conservation in the Hwaseong Reservoir watershed. The model was calibrated against the field measurements of meteorological data, streamflow and water qualities ($BOD_5$, T-N, T-P) at each observatory for 4 years (2007-2010). The water quality characteristics of inflow streams were evaluated. The 4 scenarios for the water quality improvement were applied to inflow streams and critical area from water pollution based on previous researches. The reduction efficiency of point and non-point sources in inflow streams was evaluated with each scenario. The results demonstrate that the expansion of advanced treatment system within wastewater treatment plants (WWTPs) and construction of pond-wetlands would be great effective management measures. In order to satisfactory the target water quality of reservoir, the measures which can control both point source and non-point source pollutants should be implemented in the watershed.