• Title/Summary/Keyword: Watershed characteristics

Search Result 1,023, Processing Time 0.026 seconds

Pollutant Load Characteristics from a Small Mountainous Agricultural Watershed in the North Han River Basin (북한강 중류 산간농업 소하천에서의 오염부하특성분석)

  • Shin, Yong-Chul;Choi, Joong-Dae;Lim, Kyoung-Jae;Shim, Hyeok-Ho;Lyou, Chang-Won;Yang, Jae E.;Yoo, Kyung-Yoal
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.6
    • /
    • pp.83-92
    • /
    • 2005
  • Natural environment of the Wolgokri stream watershed, located in Chuncheon, Gangwon province, Korea, has been well preserved as a traditional agricultural watershed. To analyze characteristics of NPS pollution generated from an mountainous agricultural watershed, the flow and water qualities of the study watershed were monitored and were analyzed to estimate pollution loads. Annual runoff volume ratio was $70.4\%$. Concentrations of T-N, T-p, COD, and TOC were higher when monthly rainfall was between $0\~30mm$ than those when monthly rainfall was between $30\~70mm$. However, the concentrations varied considerably when monthly rainfall was higher than 100mm. The flow weighted mean concentrations(mg/L) of BOD, COD, TOC, $NO_3-N$, T-N, T-P and SS were 1.96, 2.72, 3.32, 1.41, 4.70, 0.187 and 13.36, respectively. The BOD, SS, T-N and T-P loads of July, 2004 were $48\%,\;17\%,\;51\%\;and\;32\%$ of annual load, respectively. The BOD, COD, TOC, $NO_3-N$, T-N, T-p, and SS loads (kg/ha) from Mar. 2004 to Apr. 2005 were 19.09, 26.55, 32.39, 13.85, 45.92, 1.887 and 130.18, respectively. The highest concentrations of BOD, NO3-N, T-N, T-p, SS, COD and TOC were found before the flow reached the peak runoff, possibly due to the first flushing effect. Generally, pollution loads of the Wolgokri watershed were not that significant. Phosphorus load, however, was higher enough to cause eutrophication in the receiving water body It was recommended that best management practices need to be implemented to reduce phosphorus sources.

A Study on the Establishment of the Hydro-Parameter by Using GIS - in Tamjin River Basin - (GIS를 이용한 수문매개변수 설정에 관한 연구 - 탐진강 유역을 중심으로 -)

  • Hwang, Eui-Jin;Kim, Woo-Hyeok;Kim, Young-Gyun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.1 s.24
    • /
    • pp.3-12
    • /
    • 2003
  • The main objective of this study is to extract the hydro-Parameter of the Tamjin River basin. A CIS is capable of extracting various hydrological factors from DEM. One of important tasks for hydrological analysis is the division of watershed. In this study, watershed itself and other geometric factors of watershed are extracted from DEM by using a CIS technique. The data of topographical map with scale of 1:25,000 and 1:250,000 in the Tamjin River basin is used for this study and it is converted to DEM date. Various forms of representation of spatial data are handled in main modules and a CRID module of ArcView. A GRID module is used on a stream in order to define watershed boundary. Based on the spatial analysis using those GIS technique, it would be possible to obtain the reasonable results of watershed characteristics. Also, the results show not only that GIS can aid watershed management, research and surveillance, but also that the geometric characteristics as parameters of watershed can be quantified more accurately and easily than conventional graphic methods. From the equations($Y=14632.87{\cdot}X^{-0.542444},\;Y=37014.1{\cdot}X^{-1.058808}$), it can be concluded that the optimal count of flow accumulation is 468 and cell size is 42m for spatial analysis by using GIS technique in Tamjin River basin.

  • PDF

Studies on the Development of Storage Tank Model for both Long and Short Terms Runoff (II) (장단기유출 양용저유 탱크 모델의 개발에 관한 연구 (II))

  • 이순혁;박명근
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.2
    • /
    • pp.51-60
    • /
    • 1991
  • The main objective of this study is to examine the adaptability for the large watershed of the storage tank model which can be applied for the analysis of both long and short terms runoff developed on the basis of hydrologic data for a smaH mountaineous watershed. The results obtained in this study are summarized as follows ; 1. Areal rainfalls of the Dae Chong watershed were calculated by Thiessen method composed of 9 Thiessen networks. 2. Optimal parameters for two types, Model A and Model B of tank models were derived through calibration procedure by standardized Powell method. 3. Monthly simulated flows of Model B are seemed to be closer to the monthly observed than those of Model A during calibration period in the long terms runoff. 4. Relative errors for the simulated flood flows of Model B were apperaed as lower percentage to the observed than those of Model A during calibration period in the short terms runoff. 5. Daily simulated hydrographs of Model B are seemed to be closer to the daily observed than those of Model A during verification period in the long terms runoff. Significance of Model B was highly acknowledged in comparison with Model A in the correlation analysis between annual observed and annual simulated runoff. 6. Reproducibility of simulated flows for Model B is generally seemed to be better than that of Model A during calibration period in the short terms runoff. 7. It can be concluded that reproducibility of Model B is superior to that of Model A in the long and short terms runoff even a large watershed like the result of the small one. 8. It was verified that adaptability for the large watershed of Model B is superior to that of Model A between the two models which were developed by a small watershed characteristics for both long and short terms runoff. 9. Further study for getting a suitable tank model is desirable to be established by the decision, calibration method of initial parameters of tank model and by additional application of another watershed with different watersheds and meterological characteristics.

  • PDF

Analysis of Runoff Characteristics for a Small Forested Watershed Using HYCYMODEL - At a watershed in Mt. Palgong - (물순환(循環)모델에 의한 산지소유역(山地小流域)의 유출특성(流出特性) 분석(分析) - 팔공산유역(八空山流域)을 대상(對象)으로 -)

  • Park, Jae Chul;Lee, Heon Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.5
    • /
    • pp.564-575
    • /
    • 2000
  • This study was carried out to reveal characteristics of long-term runoff by using HYCYMODEL in a small forested watershed. From May to September in 1998 and in 1999, the fitness of HYCYMODEL and runoff characteristics were estimated by HYCYMODEL using rainfall and discharge at the experimental watershed. The function of stage and discharge in the experimental watershed was determined as following equation $Q=11.148H^{2.5867}$($R^2=0.9956$). From May to September in 1998 and in 1999, the runoff rates were 57.7% in 1998 and 87.1% in 1999 at the experimental watershed. The discharge was assumed to be increased because of rainfall intensity difference and thinning. By applicability test, the HYCYMODEL showed good estimation of runoff by optimized fifteen parameters. Comparing runoff characteristics before and after thinning by calculating through HYCYMODEL, direct runoff and base runoff increased 4%, 7%, respectively as evapotranspiration decreased 11%. Parameters $D_{50}$ and $K_h$, which were related to the direct run, and a parameter $K_u$, which was related to the baseflow, were assumed to indicate that forest was changed by the effect of thinning and weathering process of bed rock.

  • PDF

A study on Determination Method of the Compliance Concentration of Effluent Limitation from Public Sewage Treatment Works in the Jinwee-stream Watershed Sewer System (유역하수도 공공하수처리시설의 방류수 수질 준수농도 설정방안 연구: 진위천 수계를 중심으로)

  • Jeong, Dong-Hwan;Cho, Yangseok;Kim, Youngseok;Ahn, Kyunghee;Chung, Hyen-Mi;Kwon, Ohsang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.4
    • /
    • pp.493-502
    • /
    • 2015
  • In accordance with the Watershed Sewer System Maintenance Plan enforced on February 2, 2013, the different compliance concentration of effluent limit be applied to effluent discharged from public sewage treatment works(PSTWs) in each watershed on the basis of water quality thereof. With the introduction of watershed sewer system, it is necessary to set the compliance concentration of effluent limit for PSTWs situated in the watershed, by region and PSTW size, to achieve water quality criteria for regional watersheds or target water quality under TMDL program. Watershed Environmental Agencies establish the Watershed Sewer System Maintenance Plan and set the compliance concentrations of effluent limit for PSTWs under the plan. The agencies plan to apply tougher effluent BOD concentration limits in Class I to IV areas. Effluent BOD concentration limits will be toughened from 5~10 mg/L to 3 mg/L in class II~III areas, from 10mg/L to 5mg/L in class IV areas. Uniform application of effluent BOD concentration limits to PSTWs in the watershed sewer system need to be complemented considering type of sewage treatment technology employed and watershed characteristics. Therefore, this study presents method to determine the compliance concentration of effluent limit from PSTWs in the watershed.

Quantitative Estimation of Pollution Loading from Hwaseong Watershed using BASINS/HSPF (BASINS/HSPF를 이용한 화성유역 오염부하량의 정량적 평가)

  • Jung, Kwang-Wook;Yoon, Chun-G.;Jang, Jae-Ho;Kim, Hyung-Chul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.2
    • /
    • pp.61-74
    • /
    • 2007
  • A mathematical modeling program called Hydrological Simulation Program-FORTRAN (HSPF) developed by the United States Environmental Protection Agency (EPA) was applied to Hwaseong watershed. It was run under BASINS (Better Assessment Science for Integrating Point and Nonpoint Sources) program, and the model was validated using monitoring data of $2002{\sim}2005$. The model efficiency of runoff ranged from good to fair in comparison between simulated and observed data, while it was from very good to poor in the water quality parameters. But its reliability and performance were within the expectation considering complexity of the watershed and pollutant sources. The nonpoint source (NPS) loading for T-N and T-P during the monsoon rainy season (June to September) was about 80% of total NPS loading, and runoff volume was also in a similar range. However, NPS loading for BOD ($55{\sim}60%$) didn't depend on rainfall because BOD was mostly discharged from point source (more than 70%). And water quality was not necessarily high during the rainy season, and showed a decreasing trend with increasing water flow. BASINS/HSPF was applied to the Hwaseong watershed successfully without difficulty, and it was found that the model could be used conveniently to assess watershed characteristics and to estimate pollutant loading including point and nonpoint sources in watershed scale.

Pollutant Loading Estimates from Watershed by Rating Curve Method and SWMM

  • Jeon, Ji-Hong;Yoon, Chun-Gyeong
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.5
    • /
    • pp.419-425
    • /
    • 2000
  • Rating curve method and SWMM (Storm Water Management Model) were applied to estimate pollutant loading from Hwa-Ong watershed in Kyunggi-Do. Rating curves were derived from sampling sites and applied to the whole watershed. SWMM version 4.4 was calibrated by field data of sampling sites and applied to the whole watershed. The pollutant loading estimated by rating curve was slightly higher than the one by SWMM, but the difference was not significant considering diffuse pollution characteristics of wide variation. Land use effect of the subcatchments could not be incorporated logically in rating curve method and difficulty in extrapolation was experienced, therefore, the estimate by rating curve method was thought to be less confident. SWMM was satisfactory in estimation of pollution loading, and its great flexibility worked well to describe complex nonurban land uses. Neither of them could exactly describe complex natural phenomena, but SWMM was preferred in this study due to its flexibility and logical hydrologic processes including land use effects. Use of reasonable watershed model rather than rating curve method for watershed pollutant loading estimate can be more practical and is recommended.

  • PDF

Evaluation of Estimated Storm runoff and Non-point Pollutant Discharge from Upper Watershed of Daecheong Reservoir during Rainy Season using L-THIA ArcView GIS Model (L-THIA ArcView GIS 모형을 이용한 대청호 만입부 유역의 직접유출 및 비점오염배출부하 산정 적용성 평가)

  • Choi, Jaewan;Lee, Hyuk;Shin, Dong-Seok;Cheon, Se-Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.984-993
    • /
    • 2009
  • There have been growing concerns of algal growth at Daecheong reservoir due to eutrophication with excess nutrient inflow. Rainfall-driven runoff and pollutant from watershed are responsible for eutrophication of the Daecheong reservoir. In this study, two subwatersheds of the Daecheong reservoir were selected and water quality characteristics were analyzed. The L-THIA ArcView GIS model was used for evaluation of direct runoff and water quality. The $R^2$ and the EI value for direct runoff were 0.95 and 0.93 at Wol-oe watershed and were 0.81, 0.71 at An-nae watershed, respectively. The $R^2$ for SS, T-P were 0.53, 0.95 at Wol-oe watershed and 0.89, 0.89 at An-nae watershed, respectively. It has been proven that the L-THIA ArcView GIS model could be used for evaluating direct runoff and pollutant load from the watershed with reasonable accuracies.

The evaluation of BASINS/HSPF and WASP5 model in Hwaong watershed and reservoir (BASINS/HSPF 및 WASP5를 이용한 화옹유역과 담수호의 적용성 검토)

  • Jung, Kwang-Wook;Yoon, Chun-Gyeong;Jang, Jae-Ho;Han, Jung-Yoon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.540-545
    • /
    • 2005
  • Large scale projects of sea-land reclamation have been practiced mainly to enlarge farmland in Korea. Most projects produced estuarine reservoir with dike construction, which might result in water quality problems due to block of natural flowing of stream water to the sea. Applicability of a widely accepted watershed-based water quality assessment tool (BASINS) and its associated watershed model was evaluated on the Hwaong watershed in Korea. BASINS was found to be a convenient and powerful tool for assessment of watershed characteristics, and provided various tools to delineate the watershed into land segments and river reaches, reclassify land use, and parameterize for HSPF simulation. WASP5 is a general purpose modeling system for assessing the fate and transport of conventional and toxic pollutants in surface water bodies. This study involved selection and linkage of available models to be used as a tool in evaluating the effects of BMPs for control on reservoir water quality. Overall,.Linkage of BASINS/HSPF and WASP5 was applicable and found to be a powerful tool in pollutant loading estimation from the watershed and reservoir, and its use is recommended.

  • PDF

Optimization of Detention Basin at Watershed Level Scale

  • Ngo, Thi Thuy;Yazdi, Jafar;Kim, Joong Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.218-218
    • /
    • 2015
  • Urbanization and waterworks construction in natural watershed have been causing higher flood risks in lowland areas. Detention basins have become one of the most efficient fundamental instruments for storm water and environmental management at watershed scale. Nowadays, there are many studies coupled numerical methods of flood routing with optimization algorithms to investigate factors that impact on the efficiency of detention basins in flood reduction in a watershed, such as detention basin location, size, and cost and watershed characteristics. Although these couplings have been become more widespread but cumbersome computation and hydraulic data requirement still are their limitations. To tackle the procedure efforts due to numerical integration and data collection, simple approach is proposed to primarily estimate effects of detention basins. The approach basis is the linear system theory applied to the solution of hydrologic flood routing. The paper introduces an analytical method for estimating detention effects deriving by recent studies and innovatively analyses this equation on fractal perspective. Then, an optimization technique is performed by applying harmony search algorithms (HSA) to optimize efficiency of detention basins at watershed scale. The location and size of upstream detention basin are simultaneously obtained. Finally, the proposed methodology, practically applied for a real watershed in Kan river, Iran.

  • PDF