• Title/Summary/Keyword: Watershed Unit

Search Result 325, Processing Time 0.028 seconds

Flood Runoff Analysis Using an Object -Oriented Runoff Model (객체지향기법을 이용한 홍수유출해석)

  • 김상민;박승우
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.51-56
    • /
    • 1999
  • An object-orient watershed runoff model was formulated using the SCS curve number method and routing routines. The four objects included in the model were rainfall , hydrologic unit, reservoir, and channel. Each object considers the data and simulation method to depict the runoff processes. the details of which were presented and discusses in the paper. The resulting model was applied to the HS #3 watershed of the Balan Watershed Project, which is 412.5 ha in size and relatively steep in landscape. The simulated runoff hydrographs from the model were close to the observed data.

  • PDF

Evaluation of Effects on SWAT Simulated Hydrology and Sediment Behaviors of SWAT Watershed Delineation using SWAT ArcView GIS Extension Patch (SWAT ArcView GIS Extension Patch를 이용한 소유역 분할에 따른 수문 및 유사 거동에 미치는 영향 평가)

  • Heo, Sunggu;Kim, Namwon;Park, Younshik;Kim, Jonggun;Kim, Seong-joon;Ahn, Jaehun;Kim, Ki-sung;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.2
    • /
    • pp.147-155
    • /
    • 2008
  • Because of increased nonpoint source runoff potential at highland agricultural fields of Kangwon province, effective agricultural management practices are required to reduce the inflow of sediment and other nonpoint source pollutants into the water bodies. The watershed-scale model, Soil and Water Assessment Tool (SWAT), model has been used worldwide for developing effective watershed management. However, the SWAT model simulated sediment values are significantly affected by the number of subwatershed delineated. This result indicates that the SWAT estimated watershed characteristics from the watershed delineation process affects the soil erosion and sediment behaviors. However, most SWAT users do not spend time and efforts to analyze variations in sediment estimation due to watershed delineation with various threshold value although topography falsification affecting soil erosion process can be caused with watershed delineation processes. The SWAT model estimates the field slope length of Hydrologic Response Unit (HRU) based on average slope of subwatershed within the watershed. Thus the SWAT ArcView GIS Patch, developed by using the regression relationship between average watershed slope and field slope length, was utilized in this study to compare the simulated sediment from various watershed delineation scenarios. Four watershed delineation scenarios were made with various threshold values (700 ha, 300 ha, 100 ha, and 75 ha) and the SWAT estimated flow and sediment values were compared with and without applying the SWAT ArcView GIS Patch. With the SWAT ArcView GIS Patch applied, the simulated flow values are almost same irrespective of the number of subwatershed delineated while the simulated flow values changes to some extent without the SWAT ArcView GIS Patch applied. However when the SWAT ArcView GIS Patch applied, the simulated sediment values vary 9.7% to 29.8% with four watershed delineation scenarios, while the simulated sediment values vary 0.5% to 126.6% without SWAT ArcView GIS applied. As shown, the SWAT estimated flow and sediment values are not affected by the number of watershed delineation significant compared with the estimated flow and sediment value without applying the SWAT ArcView GIS Patch.

Spatial Distribution and Geomorphological Characteristics of Headwater Stream (Dorang) Catchments in Geum River Basin (금강유역 내 도랑유역 분포 및 지형적 특성 분석)

  • Kim, Haejung;Cho, Hong-Lae;Koo, Bhon Kyoung
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.3
    • /
    • pp.319-328
    • /
    • 2014
  • Dorang - the Korean term for headwater streams - occupy a large portion of the total stream length in a basin, and contribute significantly towards the quantitative and qualitative characteristics, and the ecosystem, of the main river. The Ministry of Environment of South Korea has supported the investigation of the status of Dorang in the nation's four major basins, since 2007. Without a widely accepted academic or legal definition of Dorang, however, there are limits to understand the distribution of Dorang at the national scale and to systematically compile a Dorang database. This paper, through a review of the stream classification system and Korean legal system delineating streams, defines Dorang as 1st and 2nd order streams according to the Strahler ordering method, in a 1:25,000 geographical scale. Analysis of the Geum River basin, with this definition, reveals that the total length of Dorang is 20,622.4 km (73.6% of total stream length), and the number of Dorang catchments is 23,639 (71.3% of the basin area). Further analysis of the geomorphological characteristics of Dorang catchments shows that the average total stream length is 1.1 km, average catchment length is 1.2 km, average drainage area is $0.4km^2$, and average drainage density is 3.08/km.

Nonlinear runoff during extreme storms in the Seolma-Cheon watershed

  • Kjeldsen, Thomas Rodding;Kim, Hyeonjun;Jang, Cheolhee;Lee, Hyosang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.235-235
    • /
    • 2015
  • This study investigates the impact of event characteristics on runoff dynamics during extreme flood events observed in a $8.5km^2$ experimental watershed located in South Korea. The 37 most extreme flood events with event rainfall in excess of 50 mm were analysed using an event-based rainfall-runoff model; the Revitalised Flood Hydrograph (ReFH) routinely used for design flood estimation in the United Kingdom. The ReFH model was fitted to each event in turn, and links were investigated between each of the two model parameters controlling runoff production and response time, respectively, and event characteristics such as rainfall depth, duration, intensity and also antecedent soil moisture. The results show that the structure of the ReFH model can effectively accommodate any nonlinearity in runoff production, but that the linear unit hydrograph fails to adequately represent a reduction in watershed response time observed for the more extreme events. By linking the unit hydrograph shape directly to rainfall depth, the consequence of the observed nonlinearity in response time is to increase design peak flow by between 50% for a 10 year return period, and up to 80% when considering the probable maximum flood (PMF).

  • PDF

Estimation of Design Flood Runoff in Ungaged Forest Watershed to Reduce Flood Damage within the National Park (국립공원내 홍수피해 저감을 위한 미계측 산림지역의 설계홍수량 추정)

  • Kim, Sang-Min;Im, Sang-Jun;Lee, Sang-Ho;Kim, Hyung-Ho;Ma, Ho-Seop;Jeong, Won-Ok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.5
    • /
    • pp.107-113
    • /
    • 2009
  • The purpose of this study is to estimate the design flood runoff for ungaged forest watershed to reduce the flood damage in national park. Daewonsa watershed in Jirisan National Park was selected as study watershed, of which characteristic factors were obtained from GIS data. Flood runoff was simulated using SCS unit hydrograph module in HEC-HMS model. SCS Curve Number (CN) was calculated from forest type area weighted average method. Huff's time distribution of second-quartile storm of the Sancheong weather station, which is nearest from study watershed, was used for design flood runoff estimation. Critical storm duration for the study watershed was 3 hrs. Based on the critical duration, the peak runoff for each sub-watershed were simulated. It is recommended to monitor the long-term flow data for major stream stations in National Park for a better reliable peak runoff simulation results.

Study on Estimation and Application of Discharge Coefficient about Nonpoint Source Pollutants using Watershed Model (유역모형을 이용한 유량조건별 배출계수 산정 및 활용방안 연구)

  • Hwang, Ha-Sun;Rhee, Han-Pil;Park, Jihyung;Kim, Yong-Seok;Lee, Sung-Jun;Ahn, Ki Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.6
    • /
    • pp.653-664
    • /
    • 2015
  • TPLMS (Total water pollutant load management system) that is the most powerful water-quality protection program have been implemented since 2004. In the implementation of TPLMS, target water-quality and permissible discharged load from each unit watershed can be decided by water-quality modeling. And NPS (Non-point sources) discharge coefficients associated with certain (standard) flow are used on estimation of input data for model. National Institute of Environmental Research (NIER) recommend NPS discharge coefficients as 0.15 (Q275) and 0.50 (Q185) in common for whole watershed in Korea. But, uniform coefficient is difficult to reflect various NPS characteristics of individual watershed. Monthly NPS discharge coefficients were predicted and estimated using surface flow and water-quality from HSPF watershed model in this study. Those coefficients were plotted in flow duration curve of study area (Palger stream and Geumho C watershed) with monthly average flow. Linear regression analysis was performed about NPS discharge coefficients of BOD, T-N and T-P associated with flow, and R2 of regression were distributed in 0.893~0.930 (Palger stream) and 0.939~0.959 (Geumho C). NPS Discharge coefficient through regression can be estimated flexibly according to flow, and be considered characteristics of watershed with watershed model.

Comparative Evaluation between Administrative and Watershed Boundary in Carbon Sequestration Monitoring - Towards UN-REDD for Mt. Geum-gang of North Korea - (탄소 저장량 감시에서 배수구역과 행정구역의 비교 평가 - 금강산에 대한 UN-REDD 대응 차원에서 -)

  • Kim, Jun-Woo;Um, Jung-Sup
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.5
    • /
    • pp.439-454
    • /
    • 2013
  • UN-REDD (United Nations programme on Reducing Emissions from Deforestation and forest Degradation) is currently being emerged as one of important mechanism to reduce carbon dioxide in relation to the deforestation. Although administrative boundary has already gained world-wide recognition as a typical method of monitoring unit in the process of GHG (Greenhouse Gas) reduction project, this approach did not provide a realistic evidence in the carbon sequestering monitoring in terms of UN-REDD; the meaningful comparison of land use patterns among watershed boundaries, interpretation for distribution trends of carbon density, calculation of opportunity cost, leakage management, etc. This research proposes a comparative evaluation framework in a more objective and quantitative way for carbon sequestering monitoring between administrative and watershed boundary approaches. Mt. Geumgang of North Korea was selected as a survey objective and an exhaustive and realistic comparison of carbon sequestration between the two approaches was conducted, based on change detection using TM satellite images. It was possible for drainage boundary approach to identify more detailed area-wide patterns of carbon distribution than traditional administrative one, such as estimations of state and trends, including historical trends, of land use / land cover and carbon density in the Mt. Geumgang. The distinctive changing trends in terms of carbon sequestration were specifically identified over the watershed boundary from 4.0% to 34.8% while less than 1% difference was observed in the administrative boundaries, which were resulting in almost 21-22%. It is anticipated that this research output could be used as a valuable reference to support more scientific and objective decision-making in introducing watershed boundary as carbon sequestering monitoring unit.

Assessment of Flood Probability Based on Temporal Distribution of Forecasted-Rainfall in Cheongmicheon Watershed (예보강우의 시간분포에 따른 청미천 유역의 홍수 확률 평가)

  • Lee, Hyunji;Jun, Sang Min;Hwang, Soon Ho;Choi, Soon-Kun;Park, Jihoon;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.17-27
    • /
    • 2020
  • The objective of this study was to assess the flood probability based on temporal distribution of forecasted-rainfall in Cheongmicheon watershed. In this study, 6-hr rainfalls were disaggregated into hourly rainfall using the Multiplicative Random Cascade (MRC) model, which is a stochastic rainfall time disaggregation model and it was repeated 100 times to make 100 rainfalls for each storm event. The watershed runoff was estimated using the Clark unit hydrograph method with disaggregated rainfall and watershed characteristics. Using the peak discharges of the simulated hydrographs, the probability distribution was determined and parameters were estimated. Using the parameters, the probability density function is shown and the flood probability is calculated by comparing with the design flood of Cheongmicheon watershed. The flood probability results differed for various values of rainfall and rainfall duration. In addition, the flood probability calculated in this study was compared with the actual flood damage in Cheongmicheon watershed (R2 = 0.7). Further, this study results could be used for flood forecasting.

A Case Study for Evaluating Forest Functions by Watershed Unit: Gyeongsangnam-do (경상남도 유역단위 산림기능평가에 관한 사례연구)

  • Kim, Hyung-Ho;Park, Young-Kyu;Roh, Hye-Jung;Jeon, Jun-Heon;Hwang, Jin-Yeong;Kang, Hyeon-Deug;Park, Joon-Hyung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.3
    • /
    • pp.163-173
    • /
    • 2011
  • This paper, as a case study on the evaluation of nationwide-unit forest functions, targeting the entire Gyeongsangnam-do region, examined the integration measures for the evaluation of national, public and private forest functions, as well as GIS data problems and GIS data building methods. Also, the distribution and characteristics of Gyeongsangnam-do's forest functions were examined. First, as integration measures for forest function evaluation, evaluation unit was proposed as watershed unit, and GIS techniques were proposed to correct some patterns of errors shown in the watershed maps. Also, of GIS data used for forest function evaluation, maps of locations of saw mills to be revised, expressway interchange location maps, and population distribution maps were built nationwide. Based on watershed units, the forest functions of 20 cities and counties in Gyeongsangnam-do were evaluated, revealing that wood production function and forest recreation function potentials, high-ranking was high distributed throughout the site, while most functions potentials, low-ranking was low distributed. In forest function maps with the application of priority by city and gun, the area size was ranked in the order of forest recreation, timber production, natural conservation, water yield, living environment conservation, and prevention of natural disaster. Case analysis results for large areas can be used in evaluating nationwide forest functions.

A proposal of unit watershed for water management based on the interaction of surface water and groundwater (지표수-지하수 연계 기반의 통합수자원 관리를 위한 단위유역 제안)

  • Kim, Gyoo-Bum;Hwang, Chan-Ik
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.spc1
    • /
    • pp.755-764
    • /
    • 2020
  • In South Korea, 850 standard watersheds and 7,807 KRF catchment areas have been used as basic maps for water resources policy establishment, however it becomes necessary to set up new standard maps with a more appropriate scale for the integrated managements of surface water-groundwater as well as water quantity-quality in the era of integrated water management. Since groundwater has a slow flow velocity and also has 3-D flow properties compared to surface water, the sub-catchment size is more effective than the regional watershed for the evaluation of surface water-groundwater interaction. The KRF catchment area, which has averagely a smaller area than the standard watershed, is similar to the sub-catchment area that generally includes the first-order or second-order tributaries. Some KRF catchment areas, which are based on the surface reach, are too small or large in a wide plain or high mountain area. Therefore, it is necessary to revise the existing KRF area if being used as a unit area for integrated management of surface-water and groundwater. A unit watershed with a KRF area of about 5 to 15 ㎢ can be effective as a basic unit for water management of local government considering a tributary composition and the location of groundwater wells, and as well it can be used as a basic tool for water demand-supply evaluation, hydrological observation system establishment, judgment of groundwater permission through a total quantity management system, pollution assessment, and prioritizing water policy, and etc.