• Title/Summary/Keyword: Watershed Management System

Search Result 378, Processing Time 0.024 seconds

Development of Desktop-Based LDC Evaluation System for Effectiveness TMDLs (효과적인 오염총량관리를 위한 데스크탑 기반의 LDC 평가 시스템 개발)

  • Ryu, Jichul;Hwang, Ha-Sun;Lee, Sung-Jun;Kim, Eun Kyoung;Kim, Yong Seok;Kum, Donghyuk;Lim, Kyoung Jae;Jung, Younghun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.4
    • /
    • pp.67-74
    • /
    • 2016
  • Load Duration Curve (LDC) can be used as a method for load management of point and non-point pollution source because the LDC easily assesses the water quality corresponding to hydrological changes in a watershed. Recently, the application of LDC to total pollution load management is a growing interest in Korea. In this regard, A desktop-based LDC assessment system was developed in this study to provide convenience to users in water quality evaluation. The developed system can simply produce the LDC by using streamflow and water quality data involved in its database. Also, The system can quantitatively inform the success or failure of the achievement for a target water quality at monthly scale. Furthermore, seasonal water quality and point/non-point pollution load in a watershed can be estimated by this system. We expect that the developed system will contribute to establish local and national policies regarding water management and total pollution load management because of its advantages such as the pollution tracking investigation and the analysis of water quality and pollution loading amount in an ungauged watershed.

Development of Web based Watershed and Sewer Management System using Computational Model and GIS (전산모형과 지리정보시스템을 결합한 Web 기반의 유역 및 하수도 관리시스템의 개발)

  • Kim, Joon Hyun;Park, Hyung Choon;Han, Yung Han
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.63-71
    • /
    • 2000
  • A web based watershed and sewer management system was developed for the analysis of stormwater runoff and sewer flow, and for optimal operation of sewer works using ArcView and SWMM. SWMM and ArcView were dynamically linked together using Avenue and Visual Basic in order to construct user-friendly management system. The developed system was applied to Choonchun city to verify its utilities. All the relevant field data were analyzed on the basis of developed system, and the modeling of runoff and sewer flow was implemented using RUNOFF and TRANSPORT blocks in SWMM. This system was connected to the management system of surface and subsurface environment management system in order to develop an integrated environmental management system. Futhermore, this system will be a critical part of overall control system of sewer works including sewer line and wastewater treatment plant. As this system can provide comprehensive prediction of flow and pollution profiles and analytical tool equipped with Web-GIS, it could serve widely as a tool not only for optimal management, but also for decision support system to examine the efficiency of planning and implementation of sewer projects.

  • PDF

Utilization of Thematic Mappers Data for the Comparison of Methods to Create Watersheds

  • Chang, Eun-Mi;Park, Kyeong;Kim, Young-Soo;Lee, Bok-Ho
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.343-348
    • /
    • 1999
  • Delineation of watersheds is one of the most basic steps for water resource management and National Park management. The purpose of this study is to investigate how to utilize Thematic Mappers scenes to compare watersheds created by running a model with those produced by digitizing topographic maps of Keum River basin. A methodology is designed and tested using Geographic Information Systems (GIS) and remote sensing to map areas with various thematic maps. A CAD data on watersheds from the Decision Support system for Water Quality is converted into GIS format. The digital elevation model with 100-meter resolution is used to create watershed by cumulative watershed method. TM scenes are also classified by new procedures including stacking method, NDVI, NDWI, and unsupervised classification methods. To evaluate the relative correctness Kyerongsan National Park was studied intensively whose area was divided into 6 watersheds in both cases. The boundaries of watershed from the model are less correct than those of the topographic maps. This result shows that automated watershed creating system needs higher-resolution digital elevation model than 100-meters.

  • PDF

Total Load Control System(TLCS) and Pollutant Loading Estimates from Watershed using BASINS (새만금 유역에 있어 BASINS 적용가능성 검토 (만경유역 유출량을 중심으로))

  • Jeon, J.H.;Yoon, C.G.
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.399-402
    • /
    • 2001
  • After the legal foundation for the Total Load Control System (TLCS) process is embedded in integrated water management counterplan for 4 major river basins (1998), Kyunggido Kwangju City prepared the implementation plan of TLCS at first time. There is little difference between TLCS and TMDL(Total Daily Maxium Loading; U.S.A). TMDL is applied only when mandatory effluent limitations are not stringent enough to attain any water quality standard. But object of TLCS not only attain water quality standard at distributed watershed but also consider development of area at non-distributed watershed. For applying of systematic and consistent TLCS, we need to establish a system integrated watershed and point source, non-point source and assessed massive database easily. Now we are study on applicable possibility of BASINS on Korea, we think that BASINS's tool and many models are more easily apply to TLCS, so we recommend TLCS will be applied using BASINS.

  • PDF

Analysis of the Implementation Effect of Total Water Load Management System Using Load Duration Curves in Sapgyo Watershed (부하지속곡선을 이용한 삽교천 유역의 오염총량관리제도 시행효과 분석)

  • Lee, Eunjeong;Kim, Taegeun
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.6
    • /
    • pp.536-548
    • /
    • 2019
  • In order to quantify the effect of the newly established the Total Water Load Management System in Sapgyo watershed, this study predicted the achievement of the target water quality at each unit watershed and the water quality according to the flow section. The HSPF model, which is the watershed runoff model, was constructed and operated based on 2015, and the water quality was predicted by inputting the loads in final target year(2030). The Load Duration Curve (LDC) was created using the simulated results of base year and target year. As a result of plotting water quality by flow conditions, it was simulated to be close to the BOD target with a difference of 0.1 ~ 0.2 mg/L in all three watersheds during the mid-range flow interval (40 ~ 60%). In case of T-P, although the target water quality was not set, the water quality was improved by Cheonan A 46%, Kokgyo A 29% and Namwon A 25%. The Muhan and Sapgyo river basins meet the target grade of middle-watershed standards. The improvement effect will be positive, as water quality, which achieves the target of Total Load Management System and the target grade of the middle-watershed standards will be expected to flow into the Sapgyo lake.

Groundwater system Investigation of the Cheonggyecheon watershed Area

  • Choi, Doo-Hyung;Yang, Jae-Ha;Jun, Seong-Chun;Lee, Kang-Keun;Kim, Yoon-Young
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.326-329
    • /
    • 2004
  • The groundwater system of the Cheonggyecheon watershed is very complicated because it is influenced by many factors such as pumping out, groundwater leakages into subway stations, civil use of groundwater, and leaking water from water supply and sewage lines. So the characterization and evaluation of the groundwater flow and contaminant transport in the Cheonggyecheon water system is quite a difficult task. The purpose of this study is to analyze the influence on the‘groundwater’ below the Cheonggyecheon watershed by the‘maintenance water’on the Cheonggyecheon stream after the restoration. We have so far collected groundwater quality data, hydrogeologic aquifer parameters, and the amount of leakages into subway stations and its influence on the groundwater system. Results show that groundwater level was influenced by the direction and depth of subway tunnel. This study will continue to monitor groundwater quality, a water level fluctuation relation between rainfall and groundwater recharge for further investigation of the groundwater flow system in the Cheonggyecheon watershed.

  • PDF

A Study on the Construction of the Framework Spatial DB for Developing Watershed Management System Based on River Network (하천 네트워크 기반의 유역관리시스템 개발을 위한 프레임워크 공간 DB 구축에 관한 연구)

  • Kim, Kyung-Tak;Choi, Yun-Seok;Kim, Joo-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.2
    • /
    • pp.87-96
    • /
    • 2004
  • When watershed spatial database is constructed from DEM, hydrological geographic characteristics of watershed can be easily extracted. And the characteristics can be assigned and managed as the attribute of spatial database. In this study the scheme of constructing framework spatial database which is basic information for managing watershed information is examined. We established framework spatial data and defined the relationship of the data. And framework spatial database of test site was constructed. In this study, HyGIS(Hydrological Geographic Information System) which is developed by domestic technology for making hydrological spatial data and developing water resources system is used. Hydrological geographic characteristics and spatial data is extracted by HyGIS. And the data from HyGIS is used for constructing framework spatial database of test site. Finally, this study suggests the strategy of constructing framework spatial database for developing watershed management system based on river network.

  • PDF

Application of a Decision Support System for Total Maximum Daily Loads (오염총량관리를 위한 의사결정 지원시스템 적용)

  • Lee, Hye-Young;Park, Seok-Soon
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.2
    • /
    • pp.151-156
    • /
    • 2004
  • A decision support system, Watershed Analysis Risk Management Framework(WARMF), was applied to the Kyungan Stream watershed, a tributary of Lake Paldang, for calculation of total maximum daily loads(TMDL). The WARMF system was developed by Systech Engineering, USA, and has been successfully used in several watersheds, for TMDL studies. The study area was divided into 14 sub-basins, based on digital elevation model(DEM). The integrated watershed and stream model of WARMF was validated by flow and BOD data measured during the year of 1999. There were reasonable agreements between model results and field data, both in water flow and BOD. The validated Kyungan WARMF was extensively utilized to study the quantitative relationship between waste loads and receiving water quality. Based on TMDL guideline at Paldang Lake and Kyungan Stream, the water quality criterion were set to be 3.0mg/L, 3.5mg/L, and 4.0mg/L at the watershed outlet. The allowable waste loads of BOD, both from point and non-point sources, were determined at each water quality criterion. From this study, it was concluded that the WARMF provided several advantages over the conventional application of watershed and stream models for TMDL study, such as time variable simulations, multiple possible soutions, and reduction loads for goal water quality, etc.

Operation of an Experimental Watershed for River Water Quality Management (하천수질관리를 위한 시험유역의 운영)

  • Kim, Sang Ho;Choi, Hung Sik
    • Journal of Wetlands Research
    • /
    • v.7 no.1
    • /
    • pp.81-91
    • /
    • 2005
  • We construct the hydrology-water quality monitoring system which can watch the variations of river flow and water quality in real time. We also construct the river management system through the hydrology-water quality monitoring system that can observe water quality and its variations for preparing for the accident of river pollution. The Gyecheon basin which is located at the upstream of Heoengseong dam is selected as an experimental watershed for the system construction. The real time monitoring system for getting more correct hydrological and water quality data consists of 3-rainfall gauge station, 3-water level gauge station, and 1-water quality gauge station. We intend that the data such as rainfall, water level, velocity, flow, and water quality will be collected and we try that the data may be used for practical and other purposes.

  • PDF

Analysis of Water Qulity changes & Characterization at the Watershed in Han River Basin for Target indicator in TMDLs (수질오염총량관리 대상물질 확대를 위한 한강수계 하천수질 경향 및 수질특성 분석)

  • Choi, Ok Youn;Kim, Hong Tae;Seo, Hee Seung;Han, Ihn Sup
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.1
    • /
    • pp.15-33
    • /
    • 2017
  • Based on the existing pollutant emissin standards which are armed at the pollutant concentration of each pollution source, government formulated and implemented new management system of total water pollutant emission. By virtue of this new management system, pollution loading amount of individual watershed could be controlled, which achieved the requirement of water quality management such as TP and BOD. In initiate stage of it's implement, BOD was selected as object of water quality management, While it's necessary to consider the continuity of water quality data and established pollutant management laws and policy. During the ongoing management, TP management was added into the system while simply BOD management was not enough. However, the frequency of algae bloom in Han-river showed a trend of same, even though TP was treated as additional control target. Therefore, this paper will analyze different water quality parameters and characteristic of water quality, so that this study can be provide as reference for watershed management of water quality, by which the applicable management period and target pollutant can be selected in the future.