• 제목/요약/키워드: Watershed Characteristics Data

검색결과 436건 처리시간 0.029초

Water and mass balance analysis for hydrological model development in paddy fields

  • Tasuku, KATO;Satoko, OMINO;Ryota, TSUCHIYA;Satomi, TABATA
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.238-238
    • /
    • 2015
  • There are demands for water environmental analysis of discharge processes in paddy fields, however, it is not fully understood in nutrients discharge process for watershed modeling. As hydrological processes both surface and ground water and agricultural water managements are so complex in paddy fields, the development of lowland paddy fields watershed model is more difficult than upland watershed model. In this research, the improvement of SWAT (Soil and Water Assessment Tool) model for a paddy watershed was conducted. First, modification of surface inundated process was developed in improved pot hole option. Those modification was evaluated by monitoring data. Second, the monitoring data in river and drainage channel in lowland paddy fields from 2012 to 2014 were analyzed to understand discharge characteristics. As a case study, Imbanuma basin, Japan, was chosen as typical land and water use in Asian countries. In this basin, lowland paddy fields are irrigated from river water using small pumps that were located in distribution within the watershed. Daily hydrological fluctuation was too complex to estimate. Then, to understand surface and ground water discharge characteristics in irrigation (Apr-Aug) and non-irrigation (Sep-Mar) period, the water and material balance analysis was conducted. The analysis was composed two parts, watershed and river channel blocks. As results of model simulation, output was satisfactory in NSE, but uncertainty was large. It would be coming from discharge process in return water. The river water and ground water in paddy fields were exchanged each other in 5.7% and 10.8% to river discharge in irrigation and non-irrigation periods, respectively. Through this exchange, nutrient loads were exchanged between river and paddy fields components. It suggested that discharge from paddy fields was not only responded to rainfall but dynamically related with river water table. In general, hydrological models is assumed that a discharge process is one way from watershed to river. However, in lowland paddy fields, discharge process is dynamically changed. This function of paddy fields showed that flood was mitigated and temporally held as storage in ground water. Then, it showed that water quality was changed in mitigated function in the water exchange process in lowland paddy fields. In future, it was expected that hydrological models for lowland paddy fields would be developed with this mitigation function.

  • PDF

SWAT 모형을 이용한 시.공간적 토지 이용변화에 따른 유량 및 유사량 특성분석 (Analysis of Watershed Runoff and Sediment Characteristics due to Spatio-Temporal Change in Land Uses Using SWAT Model)

  • 신용철;임경재;김기성;최중대
    • 한국관개배수논문집
    • /
    • 제14권1호
    • /
    • pp.50-56
    • /
    • 2007
  • In this study, the Soil and Water Assessment Tool (SWAT) model was used to assess spatiotemporal effects on watershed runoff and sediment characteristics due to land uses changes from 1999 to 2002 at the small watershed, located in Chuncheon-si, Gangwon province. The annual average flow rate of Scenario I (long-term simulation using land use of 1990), II (long-term simulation using land use of 1996), III(long-term simulation using land use of 200) and IV(simulation using land use of 1990, 1995, and 2000) in long-term simulation) using the SWAT model were 29,997,043 m3, 29,992,628 m3, 29,811,191 m3 and 29,931,238 m3, respectively. It was shown that there was no significant changes in estimated flow rate because no significant changes in land uses between 1990 and 2000 were observed. The annual average sediment loads of Scenarios I, II, III and IV for 15 year period were 36,643 kg/ha, 45,340 kg/ha , 27,195 kg/ha and 35,545 kg/ha, respectively. The estimated annual sediment loads from Scenarios I, II, and III, were different from that from the scenario IV, considering spatio-temporal changes in land use and meterological changes over the years, by 10%, 127%, and temporal changes in land use and meterological changes over the years, by 10%, 127%, and 77%. This can be explained in land use changes in high soil erosion potential areas, such as upland areas, within the study watershed. The comparison indicates that changes in land uses upland areas, within the study watershed. The comparison indicates that changes in land uses can affect on sediment yields by more than 10%, which could exceed the safety factor of 10% in Total Maximum Daily Loads (TMDLs). It is, therefore, recommended that not only the temporal analysis with the weather input data but also spatial one with different land uses need to be considered in long-term hydrology and sediment simulating using the SWAT model

  • PDF

남강 중권역의 효율적인 유역관리를 위한 중점관리 대상지류 선정 (Selection of Priority Management Target Tributary for Effective Watershed Management in Nam-River Mid-watershed)

  • 정강영;김경훈;이재운;이인정;윤종수;이경락;임태효
    • 한국물환경학회지
    • /
    • 제29권4호
    • /
    • pp.514-522
    • /
    • 2013
  • The major 24 tributaries in Nam-River mid-watershed were monitored for discharge and water quality in order to understand the characteristics of the watershed and to select the tributary catchment for improving water quality. According to the analytical results of discharge and water quality monitoring data of 24 tributaries, the mean value of discharge below $0.1m^3/s$ was 62.5% among the monitored tributaries and it mostly exceeded the water quality standards of Nam-river mid-watershed ($BOD_5$ = 3 mg/L, T-P = 0.1 mg/L over). According to the stream grouping method and the water quality delivery load density ($kg/day/km^2$) based on the results of tributary discharge and water quality monitoring, the tributary watersheds for improving the water quality were selected. In the Nam-River mid-watershed, tributaries in the GaJwaCheon, HaChonCheon catchment (Group D, $BOD_5$ = 3 mg/L over) and in the UirYeongCheon, SeokGyoCheon catchment (Group A, T-P = 0.1 mg/L over), which have a small flow (and/or large flow) and a high concentrations of water pollutants. The various water quality improving scheme for tributaries, in accordance with the reduction of potential point source pollution by living sewage and livestock wastewater, should be established and implemented.

BASINS/WinHSPF를 이용한 남한강 상류 유역의 비점오염원 저감효율평가 (A Study on BASINS/WinHSPF for Evaluation of Non-point Source Reduction Efficiency in the Upstream of Nam-Han River Watershed)

  • 윤춘경;신아현;정광욱;장재호
    • 한국물환경학회지
    • /
    • 제23권6호
    • /
    • pp.951-960
    • /
    • 2007
  • Window interface to Hydrological Simulation Program-FORTRAN (WinHSPF) developed by the United States Environmental Protection Agency (EPA) was applied to the upstream of Nam-Han river watershed to examine its applicability for loading estimates in watershed scale and to evaluate non-point source control scenarios using BMPRAC in WinHSPF. The WinHSPF model was calibrated and verified for water flow using Ministry of Construction and Transportation (MOCT, 3 stations, 2003~2005) and water qualities using Ministry of Environment (MOE, 5 station, 2000~2006). Water flow and water quality simulation results were also satisfactory over the total simulation period. But outliers were occurred in the time series data of TN and TP at some regions and periods. Therefore, it required more profit calibration process for more various parameters. As a result, all the study was performed within the expectation considering the complexity of the watershed, pollutant sources and land uses intermixed in the watershed. The estimated pollutant load for annual average about $BOD_5$, T-N and T-P respectively. Nonpoint source loading had a great portion of total pollutant loading, about 86.5~95.2%. In WinHSPF, BMPRAC was applied to evaluate non-point source control scenarios (constructed wetland, wet detention ponds and infiltration basins). All the scenarios showed efficiency of non-point source removal. Overall, the HSPF model is adequate for simulating watersheds characteristics, and its application is recommended for watershed management and evaluation of best management practices.

대청호 상류 유역의 비점오염원 유출특성 분석 및 L-THIA 모형 적용성 평가 (Analysis of the Characteristics of NPS Runoff and Application of L-THIA model at Upper Daecheong Reservoir)

  • 신민환;이재안;천세억;이열재;임경재;최중대
    • 한국농공학회논문집
    • /
    • 제52권1호
    • /
    • pp.1-11
    • /
    • 2010
  • Generation and transportation of runoff and pollutant loads within watershed generated eutrophication at Daecheong reservoir. To improve water quality at Daecheong reservoir, the best management practices should be developed and applied at upper watersheds for water quality improvement at downstream areas. In this study, two small watersheds of upper Daecheong reservoir were selected. The Long-Term Hydrologic Impact Assessment (L-THIA) model has been widely used for the estimation of the direct runoff worldwide. To apply the L-THIA ArcView GIS model was evaluated for direct runoff and water quality estimation at small watershed. And the Web-based Hydrograph Analysis Tool (WHAT) was used for direct runoff separating from total flow. As a result, the $R^2$ (Coefficient of determination) value and Nash-Sutcliffe coefficient value for direct runoff comparison at An-nae watershed were 0.81 and 0.71, respectively. And the $R^2$ value and Nash-Sutcliffe coefficient value at Wol-oe were 0.95 and 0.93. The $R^2$ value of BOD, TOC, T-N and T-P at An-nae watershed were BOD 0.94, TOC 0.81, T-N 0.94 and T-P 0.89. And the $R^2$ value of BOD, TOC, T-N and T-P at Wol-oe watershed were BOD 0.80, TOC 0.93, T-N 0.86 and T-P 0.65. The result that estimated pollutant loadings using the L-THIA ArcView GIS model reflected well the measured pollutant loadings except for T-P in Wol-oe watershed. With L-THIA ArcView GIS model, the direct runoff and non-point pollutant (NPS) loadings in the watershed could be analyzed through simple input data such as daily rainfall, land uses, and hydrologic soil group.

유역분할에 따른 유출응답에 관한 연구 (A Study on Runoff Response according to Dividing Watershed.)

  • 김경탁;최윤석
    • 한국수자원학회논문집
    • /
    • 제36권6호
    • /
    • pp.911-924
    • /
    • 2003
  • 수자원 분야에서 GIS를 이용한 유역의 지형인자 추출 및 수문모형의 매개변수 추출에 대한 많은 연구가 진행되고 있다. 그러나 아직까지 이러한 방법들에 대한 명확한 기준은 정립되어 있지 않은 상태이다. 본 연구에서는 집중형 모형을 적용함에 있어서 동일 특성으로 구분되어 지는 유역분할에 따른 유출 응답특성의 변화에 대해서 검토하고자 한다. GIS를 이용한 유역의 분할과 수문학적 지형인자 및 매개변수의 계산을 위하여 WMS를 사용하였으며, 유출응답 특성의 규명을 위한 수문모형으로는 HEC-1을 사용하였다. 본 연구에서는 평창강 및 위천 유역을 대상으로 유출모의를 수행하였으며, 해당 유역의 수문현상을 가장 잘 모의할 수 있는 적정 유역분할에 관하여 연구하였다. 유역분할이 유출모의에 미치는 영향을 검토하였으며 일정 유역분할 이후에는 유역분할이 유출모의결과에 큰 영향을 미치지 않음을 알 수 있었다. 이러한 연구 결과는 특정 유역의 유출모의시 최적 모의 면적을 선정하는데 도움이 될 수 있을 것으로 판단된다.

영국의 설계홍수량 산정모형인 FEH-ReFH의 국내 남천유역 적용성 평가 (Applicability Test of UK Design Flood Estimation Model FEH-ReFH to Korean Namcheon Watershed)

  • 김상호;안소라;장철희;김성준
    • 한국지리정보학회지
    • /
    • 제16권3호
    • /
    • pp.68-80
    • /
    • 2013
  • 본 연구는 미계측유역의 설계홍수량 산정을 목적으로 영국의 강우-유출모형인 FEH-ReFH(Flood Estimation Handbook-Revitalised Flood Hydrograph)의 국내 적용성을 평가하기 위해 위천유역의 일부인 남천유역($165.12km^2$)을 대상으로 한 강우-유출 모형을 구성하는데 있다. 모형의 입력자료인 유역 및 수문특성인자를 한국 실정에 맞게 구축하기 위해 GIS기반 전처리 프로그램을 개발하였다. 모형은 남천 유역에 대하여 관측된 6개의 강우-유출 사상을 이용한 보정을 실시하여, 모형의 적용 적합성을 분석하였다. 모형의 손실율 및 단위유량도 매개변수를 대상으로 실측자료를 이용한 보정을 실시하였다. 본 연구의 결과는 기존의 설계홍수량 산정과정에 있어, 영국의 방법을 고려한 국내의 표준 설계홍수량 산정과정을 정립하는데 기여할 것으로 판단된다.

금강 유역내 중규모 하천의 계획하폭 산정 (Determination of Design Channel Width for from Medium Rivers in Geum-River Basin)

  • 맹봉재;이종석;차영기
    • 한국방재학회 논문집
    • /
    • 제7권1호통권24호
    • /
    • pp.47-56
    • /
    • 2007
  • 본 연구는 금강유역내 중규모 하천을 대상으로 계획홍수량, 유역면적, 유로연장, 하상경사 등 유역의 수리 수문학적 특성 인자를 매개변수로 하여 계획하폭 결정식을 제안하였다. 유도한 계획하폭 산정식은 다중 회귀분석에 의한 결정계수 등의 비교에서 기존에 사용하고 있는 중부지방 경험식, 하천설계기준에 비해 우수한 결과를 나타냈다. 이들 결과를 다른 자료군의 금강수계 동일규모 유역을 대상으로 검증한 결과는 계획홍수량, 유역면적, 유로연장, 하상경사의 4개 매개변수로 유도한 관계식이 가장 우수한 것으로 나타났다. 본 연구에서 유도한 관계식을 수공실무의 계획 하폭산정에 적용한다면 현재 사용하고 있는 경험식보다 좋은 결과를 얻을 수 있을 것이다.

낙동강 중류 지역의 통합적 유역환경평가 및 유형화 (An Integrated Watershed Environmental Assessment and Classification of the Mid-Nakdong River Region)

  • 정성관;박경훈
    • 환경영향평가
    • /
    • 제13권3호
    • /
    • pp.137-151
    • /
    • 2004
  • Many of today's environmental problems are regional in scope and their effects overlap and interact. The purpose of this paper is to developed a simple method for an integrated assessment of environmental conditions across the Mid-Nakdong River Region, by combining data on land use, impervious cover, roads, streams, riparian areas, forest patches, population, pollutant loadings, soil erosion and topography. A cluster analysis was used to identify groups of sub-watersheds with similar environmental characteristics. The mean value for each group was used to find watershed that may be more vulnerable to future environmental degradation. Watersheds in cluster I and II had high amount of forest, but the amount of riparian vegetation was low. Watersheds in cluster III, which located in the middle Geumho River and the main course of Nakdong River, had a greater proportion of their agriculture, a greater proportion of agriculture on steep slopes, and less forest adjacent to streams. Watersheds in cluster IV and V were in the most urbanized areas of the region. The principal adverse impacts for watersheds in this group were high scores for urban area, impervious cover, pollutant loadings, population density, forest fragmentation, and low amounts of forest and riparian forest cover. Notwithstanding the exploratory nature of cluster analysis, it appears to be a useful tool for grouping watersheds with similar environmental characteristics.

안양천 유역의 강우시 비점오염원에 따른 유출부하특성에 관한 연구 (Study on Runoff Characteristics of Nonpoint Sources during Rainfall in Anyangchun Watershed)

  • 황병기;유세진;차영기
    • 환경영향평가
    • /
    • 제10권3호
    • /
    • pp.223-234
    • /
    • 2001
  • In this study, we conducted a survey to examine the runoff characteristics of nonpoint sources, which wash off pollutants from the surface of basin during rainfall and affect water pollution of streams. An Anyangchun basin in the region Ewiwang City was selected as a study site. The basin divided into several subbasins such as Wanggokchun, Ojeonchun, and Anyangchun based on the tributaries, which confluence to the main stream of Anyangchun. Four times of field examination had been carried out between July and August of 2000, and water quality data collected from the surveys had been analysed. The survey includes in-situ flow, DO and PH measurements in the outlet of catchment. Laboratory analysis includes BOD, TN, TP. From the result, pollutant by runoff of nonpoint sources were washed out along with stormwater in the beginning of rainfall, and flowed into streams resulted in stream pollution. In case of BOD, the load from Ojeonchun catchment, most of which included urban areas, took up 50% of the total load from the entire watershed. Thus, by the results, it is clear that runoff load by urban nonpoint sources plays an important role in the control and management of nonpoint sources for the watershed.

  • PDF