• Title/Summary/Keyword: Watershed Characteristics Data

Search Result 436, Processing Time 0.03 seconds

Optimization of Detention Basin at Watershed Level Scale

  • Ngo, Thi Thuy;Yazdi, Jafar;Kim, Joong Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.218-218
    • /
    • 2015
  • Urbanization and waterworks construction in natural watershed have been causing higher flood risks in lowland areas. Detention basins have become one of the most efficient fundamental instruments for storm water and environmental management at watershed scale. Nowadays, there are many studies coupled numerical methods of flood routing with optimization algorithms to investigate factors that impact on the efficiency of detention basins in flood reduction in a watershed, such as detention basin location, size, and cost and watershed characteristics. Although these couplings have been become more widespread but cumbersome computation and hydraulic data requirement still are their limitations. To tackle the procedure efforts due to numerical integration and data collection, simple approach is proposed to primarily estimate effects of detention basins. The approach basis is the linear system theory applied to the solution of hydrologic flood routing. The paper introduces an analytical method for estimating detention effects deriving by recent studies and innovatively analyses this equation on fractal perspective. Then, an optimization technique is performed by applying harmony search algorithms (HSA) to optimize efficiency of detention basins at watershed scale. The location and size of upstream detention basin are simultaneously obtained. Finally, the proposed methodology, practically applied for a real watershed in Kan river, Iran.

  • PDF

GIS Application Model for Spatial Simulation of Surface Runoff from a Small Watershed(I) (소유역 지표유출의 공간적 해석을 위한 지리정보시스템의 응용모형(I) -격자 물수지 모형의 개발 및 적용-)

  • 김대식;정하우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.3_4
    • /
    • pp.23-33
    • /
    • 1995
  • Geographic data which are difficult to handle by the characteristics of spatial variation and variety turned into a possibility to analyze with tlie computer-aided digital map and the use of Geographic Information System(GIS). The purpose of this study is to develop and apply a GIS application model (GISCELWAB) for the spatial simulation of surface runoff from a small watershed. This paper discribes the modeling procedure and the applicability of the cell water balance model (CELWAB) which calculates the water balance of a cell and simulates surface runoff of watershed simultaneously by the interaction of cells. The cell water balance model was developed to simulate the temporal and spatial storage depth and surface runoff of a watershed. The CELWAB model was constituted by Inflow-Outflow Calculator (JOC) which was developed to connect cell-to-cell transport mechanism automatically in this study. The CELWAB model requests detail data for each component of a cell hydrologic process. In this study, therefore, BANWOL watershed which have available field data was selected, and sensitivity for several model parameters was analyzed. The simulated results of surface runoff agreed well with the observed data for the rising phase of hydrograph except the recession phase. Each mean of relative errors for peak discharge and peak time was 0.21% and2.1 1% respectively. In sensitivity analysis of CELWAB , antecedent soil moisture condition(AMC) affected most largely the model.

  • PDF

Analysis of Rainfall-Runoff Characteristics on Impervious Cover Changes using SWMM in an Urbanized Watershed (SWMM을 이용한 도시화유역 불투수율 변화에 따른 강우유출특성 분석)

  • Oh, Dong Geun;Chung, Se Woong;Ryu, In Gu;Kang, Moon Seong
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.61-70
    • /
    • 2010
  • The increase of impervious cover (IC) in a watershed is known as an important factor causing alteration of water cycle, deterioration of water quality and biological communities of urban streams. The study objective was to assess the impact of IC changes on the surface runoff characteristics of Kap Stream basin located in Geum river basin (Korea) using the Storm Water Management Model (SWMM). SWMM was calibrated and verified using the flow data observed at outlet of the watershed with 8 days interval in 2007 and 2008. According to the analysis of Landsat satellite imagery data every 5 years from 1975 to 2000, the IC of the watershed has linearly increased from 4.9% to 10.5% during last 25 years. The validated model was applied to simulate the runoff flow rates from the watershed with different IC rates every five years using the climate forcing data of 2007 and 2008. The simulation results indicated that the increase of IC area in the watershed has resulted in the increase of peak runoff and reduction of travel time during flood events. The flood flow ($Q_{95}$) and normal flow ($Q_{180}$) rates of Kap Stream increased with the IC rate. However, the low flow ($Q_{275}$) and drought flow ($Q_{355}$) rates showed no significant difference. Thus the subsurface flow simulation algorithm of the model needs to be revisited for better assessment of the impact of impervious cover on the long-term runoff process.

pollutant Load Characteristics of a Agricultural Watershed in Juam Lake (주암호 농업유액 오염부하 특성)

  • Yoon, Kwang-Sik;Choi, Soo-Myung;Han, Kuk-Heon;Cho, Jae-Young
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.433-436
    • /
    • 2002
  • A subwatershed within Juam Lake was monitored to identify hydrologic and water quality characteristics. Rainfall record was collected and flow rate measurement and water quality sampling were conducted periodically at the watershed outlet. Hydrologic response and pollutant load characteristics were analyzed based on observed data.

  • PDF

Relationship between the Flow data on the Unit Watersheds and on the Stream Flow Monitoring Network (수질오염총량관리 단위유역 유량자료와 하천유량 측정망 자료의 연계성 분석)

  • Park, Jun Dae;Oh, Seung Young
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.1
    • /
    • pp.55-65
    • /
    • 2013
  • It is very difficult to apply stream flow data directly to the management of Total Maximum Daily Loads because there are some differences between the unit watershed and the stream flow monitoring network in their characteristics such as monitoring locations and its intervals. Flow duration curve can be developed by linking the daily flow data of stream monitoring network to 8 day interval flow data of the unit watershed. This study investigated the current operating conditions of the stream flow monitoring network and the flow relationships between the unit watershed and the stream flow monitoring network. Criteria such as missing and zero value data, and correlation coefficients were applied to select the stream flow reference sites. The reference sites were selected in 112 areas out of 142 unit watersheds in 4 river basins, where the stream flow observations were carried out in relatively normal operating conditions. These reference sites could be utilized in various ways such as flow variation analysis, flow duration curve development and so on for the management of Total Maximum Daily Loads.

A Method of Simulating Ephemeral Stream Runoff Characteristics in Cheonmi-cheon Watershed, Jeju Island (제주 천미천 유역의 간헐하천 유출특성 모의 방안)

  • Kim, Nam-Won;Chung, Il-Moon;Na, Hanna
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.523-531
    • /
    • 2013
  • In this study, a method of simulating ephemeral stream runoff characteristics in Jeju watershed is newly suggested. The process based conceptual-physical scheme is established based on the SWAT-K and applied to Cheonmi-cheon watershed which shows the typical pattern of ephemeral stream runoff characteristics. For the proper simulation of this runoff, the intermediate flow and baseflow are controlled to make downward percolation should be dominant. The result showed that surface runoff simulated by using the modified scheme showed good agreement with observed runoff data. In addition, it was found that the estimated runoff directly affected the groundwater recharge rate. This conceptual model should be continuously progressed including rainfall interception, spatially estimated evapotranspiration and so forth for the reasonable simulation of the hydrologic characteristics in Jeju island.

A Study on the Establishment of the Hydro-Parameter by Using GIS - in Tamjin River Basin - (GIS를 이용한 수문매개변수 설정에 관한 연구 - 탐진강 유역을 중심으로 -)

  • Hwang, Eui-Jin;Kim, Woo-Hyeok;Kim, Young-Gyun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.1 s.24
    • /
    • pp.3-12
    • /
    • 2003
  • The main objective of this study is to extract the hydro-Parameter of the Tamjin River basin. A CIS is capable of extracting various hydrological factors from DEM. One of important tasks for hydrological analysis is the division of watershed. In this study, watershed itself and other geometric factors of watershed are extracted from DEM by using a CIS technique. The data of topographical map with scale of 1:25,000 and 1:250,000 in the Tamjin River basin is used for this study and it is converted to DEM date. Various forms of representation of spatial data are handled in main modules and a CRID module of ArcView. A GRID module is used on a stream in order to define watershed boundary. Based on the spatial analysis using those GIS technique, it would be possible to obtain the reasonable results of watershed characteristics. Also, the results show not only that GIS can aid watershed management, research and surveillance, but also that the geometric characteristics as parameters of watershed can be quantified more accurately and easily than conventional graphic methods. From the equations($Y=14632.87{\cdot}X^{-0.542444},\;Y=37014.1{\cdot}X^{-1.058808}$), it can be concluded that the optimal count of flow accumulation is 468 and cell size is 42m for spatial analysis by using GIS technique in Tamjin River basin.

  • PDF

Application of MIKE SHE Modeling System to the Gyeongancheon Watershed (경안천 유역에 대한 MIKE SHE모형의 적용)

  • Im, Sang-Jun;Kim, Hyeon-Jun;Jang, Cheol-Hee
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.463-466
    • /
    • 2003
  • The physically based distributed modelling system, MIKE SHE, has been applied to the upper sub-watershed of the Gyeongancheon watershed. A horizontal grid square was constructed to represent the spatial variations in watershed characteristics, landuse, soil, and rainfall distributions. The hydraulic model MIKE 11 was also coupled with the MIKE SHE to simulate river flow in the main and tributaries of Gyeongancheon. The simulated daily stream flow at the outlet of the watershed was compared to the observed data for the period of 1988 to 1991. The results demonstrated the applicability of a comprehensive hydrological modelling system as management tool for watershed and floodplain.

  • PDF

Determination of Flood Hydrograph by Remote Sensing Techniques in a Small Watershed (원격탐사 기법에 의한 소유역의 홍수 수문곡선 결정)

  • 남현옥;박경윤;조성익
    • Korean Journal of Remote Sensing
    • /
    • v.5 no.1
    • /
    • pp.13-27
    • /
    • 1989
  • In recent years satellite data have been increasingly used for the analysis of floodprone areas. This study was carried out to demonstrate the usefulness of repetitive satellite imagery in monitoring flood levels of the Pyungchang watershed. Runoff characteristics parameters were analyzed by Soil Conservation Service(SCS) Runoff Curve Number(RCN) based on Landsat imagery and Digital Terrain Model data. The RCN average within the watershed was calculated from RCN estimates for all the pixels(picture elements) and adjusted by antecedent precipitation conditions. The direct runoff hydrograph was derived from the unit hydrograph using SCS dimensionless unit hydrograph and effective rainfalls estimated by the SCS method. In comparsion of the direct runoff hydrograph with the measured rating curve their peak times differ by one hour and peak discharges differ by 5.9 percents of the discharge from each other. It was shown that repetitive satellite image could be very useful in timely estimating watershed runoffs and evaluating ever-changing surface conditions of a river basin.

An Evaluatiou of Parameter Variations for a Linear Reservoir (TANK) Model with Watershed Characteristics (유역특성에 따른 탱크모형 매개변수의 변화)

  • 김현영;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.28 no.2
    • /
    • pp.42-52
    • /
    • 1986
  • This study involves the estimation of optimal ranges of parameters for a linear watershed model. A well-known TANK model was chosen and a linear combination of four tanks assumed. The model was used to simulate daily streamflow for six watersheds of different sizes and by a trial-and-error approach a set of optimal parameters defined. The parameters were related to watershed sizes and land use conditions. Optimal parameters for ungaged conditions were defined from the relationships; daily streamflow simulated and compared to the observed date. The simulated results were in a general agreement with the data.

  • PDF