• Title/Summary/Keyword: Waterless container

Search Result 2, Processing Time 0.014 seconds

Development of a Waterless Container Utilizing Thermoelectric Modules for Live Fish Transportation (열전소자를 이용한 활어 수송용 무수 컨테이너의 개발)

  • 윤태복;김남진;이재용;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.5
    • /
    • pp.519-524
    • /
    • 2000
  • The purpose of this study is to develop a low temperature waterless container for live fish transportation which is economical and efficient The principle of the waterless transportation is that a live fish becomes asphyxial at about $5^{\circ}C$can survive without water for a long time. A low temperature waterless container is developed for this purpose, which utilizes thermoelectric modules for rather smaller and lighter cooling system with precise temperature control devise compared to the existing mechanical system. At first, we succeeded in making flounders alive in the waterless container for 24 hours. Also when flounders were transported in a round trip from Inchon to Pusan in the waterless container, carried in a car, they survived in the waterless container for over 21 hours.

  • PDF

Study of the temperature container system for a live fish transportation (활어수송용 저온 컨테이너 시스템 연구)

  • 윤석만;김종보;조영제;허병기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.3
    • /
    • pp.343-347
    • /
    • 1998
  • The objective of this study is to manufacture the low temperature waterless container that is compact and low cost for a live fish transportation. Using the low temperature water container, it makes observations on the optimal conditions such as the amount of dissolved oxygen, total ammonia and nitrite in seawater for determining the survival rate of live fish in short and long-term transportation. Using a sole as a live fish, the temperatures of $0^{\circ}C$, 3$^{\circ}C$, 5$^{\circ}C$, 7$^{\circ}C$, 15$^{\circ}C$ were controled for there effects. The results of this investigation show that as the seawater temperature increased, the amount of oxygen decreased and there was a low temperature shock below 3$^{\circ}C$. It was observed that the fish was died with 30$m\ell/\ell$of ammonia. The optimal temperature is about 5$^{\circ}C$ for live fish transportation to maintain best survival rate.

  • PDF