• 제목/요약/키워드: Waterjet 추진

검색결과 27건 처리시간 0.024초

Pod형 물분사 추진장치 성능시험 연구 (Performance Test of Pod-type Waterjet Propulsion System)

  • 김기섭;송인행;안종우;문일성
    • 대한조선학회논문집
    • /
    • 제34권4호
    • /
    • pp.21-30
    • /
    • 1997
  • 본 논문은 복합지지형 초고속선에 사용될 pod형 물분사 추진장치에 대한 예인수조 실험 및 성능해석 결과를 보여준다. 선체와 물분사 흡입구간의 상호작용이 매우 작은 것으로 가정하고 선체저항 및 추진성능 실험을 토대로 시험선 운항시 성능을 해석하였다. 축류식 펌프를 갖는 pod형물분사 추진장치를 설계하고 단독특성시험 시스템을 개발하여 실험을 수행하였다. 실험결과로부터 펌프 성능, 제트효율, 흡입구 및 노즐의 손실계수 등 물분사 추진장치 설계 및 특성파악에 유용한 자료를 확보하였다. 실험결과는 설계요구조건과 비교적 좋은 일치를 보여준다.

  • PDF

실선 물분사 추진장치 성능시험 및 모형선-실선 상관관계 (Performance Test and Model-Ship Correlation for a Waterjet Propulsion System)

  • 안종우;이창용;박영하;정종안;김병현
    • 대한조선학회논문집
    • /
    • 제35권4호
    • /
    • pp.11-18
    • /
    • 1998
  • 본 논문은 복합지지형 초고속 화물 시험선인 "나래"호에 장착된 물분사 추진장치에 대한 해상성능시험에 대하여 기술하였다. 물분사 추진 장치에서 제트 속도, 임펠러에 걸리는 추력 및 토오크 계측 방법에 대해 설명하였다. 해상성능시험 결과로부터 물분사 추진장치의 성능을 분석하였고, 1996년에 수행된 유사 물분사 추진장치 모형시험 결과와 비교하였다. 해상성능시험로부터 추정된 유효마력은 모형선 결과와 좋은 일치를 보여준다. 시험선의 최적 부상 높이는 0.75m로 추정되고 물분사 추진장치의 준추진효율은 15노트에서 0.315으로 추정되었다. 본 시험을 통하여 펌프의 성능, 제트 효율, 유입부 덕트와 노즐에서의 손실 등에 관한 유용한 자료를 확보하였으며, 모형시험 결과와 유사한 경향을 보여주었다.

  • PDF

Waterjet 추진선의 초기 성능추정 (Preliminary power predication of waterjet driven craft)

  • 최군일
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2001년도 춘계학술대회 논문집
    • /
    • pp.90-94
    • /
    • 2001
  • A Waterjet has been widely used for the propulsion of various speed range of marine vehicles due to its many advantages compared with the conventional screw propellers. In this paper, a power prediction based on momentum flux method is presented for the preliminary estimation of required power and selection of propulsion system for the waterjet driven craft. A theoretical basis of the mechanism of the waterjet is given and some of the empirical formulas are given as well. Finally the influence of intake type and nozzle exit velocity on the efficiency will be discussed.

  • PDF

워터제트 추진 모형시험에 대한 연구 (A Study on the Waterjet Propulsion in Model Scale)

  • 최균일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제21권5호
    • /
    • pp.474-481
    • /
    • 1997
  • Waterjet propulsion generally refers to propulsion of ships by internally mounted pumps with proper ducting. This arrangement of the actuator component of the system leads to the fundamental differences with respects to screw propeller system. In this paper, the basic hydrodynamic characteristics of waterjet propulsion was outlined to clarify the application consideration and proposal for carrying out model self-propulsion tests with waterjet propelled models was presented. The results of model self-propulsion tests carried out in the Hyundai Maritime Research Institute towing tank with catamaran ship were presented.

  • PDF

Waterjet 선박추진용 사류펌프의 설계 및 성능해석 (Design and Performance Analysis of Mixed-Flow Pump: for Waterjet Marine Propulsion)

  • 황순찬;윤의수;오형우;최범석;박무룡;안종우
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.47-53
    • /
    • 2002
  • The hydraulic design optimization and performance analysis of mixed-flow pumps for waterjet marine vehicle propulsion has been carried out using mean streamline analysis and three-dimensional computational fluid dynamics (CFD) code. In the present study the conceptual design optimization has been formulated with a non-linear objective function to minimize the fluid dynamic losses and then the commercial CFD code was incorporated to allow for detailed flow dynamic phenomena in the pump system. New designed mixed-flow model pump has been tested in the laboratory. Predicted performance curves by the CFD code agree very well with experimental data for a newly designed mixed-flow pump over the normal operating conditions. The design and prediction methods presented herein can be used efficiently as a unified hydraulic design process of mixed-flow pumps for waterjet marine vehicle propulsion.

  • PDF

워터제트 선박추진용 사류펌프의 설계 및 성능해석 (Design and Performance Analysis of Mixed-Flow Pumps for Waterjet Marine Propulsion)

  • 윤의수;오형우;안종우
    • 한국유체기계학회 논문집
    • /
    • 제6권2호
    • /
    • pp.41-46
    • /
    • 2003
  • The hydraulic design optimization and performance analysis of mixed-flow pumps for waterjet marine vehicle propulsion has been carried out using mean streamline analysis and three-dimensional computational fluid dynamics (CFD) code. In the present study, the conceptual design optimization has been formulated with a non-linear objective function to minimize the fluid dynamic losses, and then the commercial CFD code was incorporated to allow for detailed flow dynamic phenomena in the pump system. Newly designed mixed-flow model pump has been tested in the laboratory. Predicted performance curves by the CFD code agree very well with experimental data for a newly designed mixed-flow pump over the normal operating conditions. The design and prediction method presented herein can be used efficiently as a unified hydraulic design process of mired-flow pumps for waterjet marine vehicle propulsion.

소형 Waterjet 추진성능 검증에 관한 연구 (A Study on the Performance of Waterjet Propulsion System for Small Naval Ship)

  • 김경배;조동주;박명규
    • 대한조선학회논문집
    • /
    • 제47권6호
    • /
    • pp.787-791
    • /
    • 2010
  • This paper describes the performance of small waterjet propulsion system and show the influence of performance for nozzle shape and area. The installed engine sets a limit on maximum power in below 1800 rpm for fuel saving. Our designated target is reached by redesign of the impeller considering engine characteristics and extention of nozzle pararell part. The results of the full-scale ships are compared with thoes of the model test. In the future, those experimental data will be applied to the relation study between engine characteristics and powering performance prediction.

POD형 물분사 추진장치의 설계 및 성능해석 (Design and Analysis for the POD Type Waterjet System)

  • 김문찬;전호환;박원규;변태영;김종현;서성부
    • 대한조선학회논문집
    • /
    • 제42권3호
    • /
    • pp.290-298
    • /
    • 2005
  • A study of design and analysis for the POD type waterjet is conducted. The analysis and design of waterjet system are more difficult than that of conventional propulsor because waterjet is complicatedly composed of many parts which are impeller, stator, inlet, nozzle, etc. The streamline method is traditionally used in the design of pump whose characteristics are similar to those of waterjet. This streamline method, however, has some limitation in analysis of a viscous flow as well as the interaction of inlet part of hull. In the present study, the developed CFD program is applied to the analysis of POD type waterjet. The developed program is first validated by comparing the existed experimental results. The designed waterjet system is also analyzed by the developed CFD program and analyzed results show that the performance of the present POD type waterjet is above the requirement.

워터제트 추진시스템의 유동 및 성능 해석 (Flow and Performance Analysis of Waterjet Propulsion System)

  • 박원규;장진호;전호환;김문찬
    • 대한조선학회논문집
    • /
    • 제41권6호
    • /
    • pp.8-14
    • /
    • 2004
  • The numerical analysis of a waterjet propulsion system was performed to provide detail understanding of complicated flow phenomena including interactions of intake duct, rotor, stator, and contracted discharge nozzle. The incompressible RANS equations were solved on moving multiblocked grid system. To handle interface boundary between rotor and stator, the sliding multiblock method was applied. The numerical results were compared with experiments and good agreement was obtained. The complicated viscous flow features of the waterjet, such as secondary flow inside the intake duct, the recovery of axial flow by the role of the stator, and tip and hub vortex, etc. were well analyzed by the present simulation. The performance of thrust and torque was also predicted.

Waterjet 추진장치의 중량감소 펌프 개발 (Development of the Weight Reduction Pump for Waterjet Propulsionl)

  • 안종우;김건도;김기섭;박영하
    • 대한조선학회논문집
    • /
    • 제47권1호
    • /
    • pp.30-37
    • /
    • 2010
  • In order to control the weight balance of the waterjet propulsion ship, the pump's weight needed to be decreased. We reduced length of pump hub, overall length of pump and chord length of impeller and stator. To keep pump efficiency and cavitation performance similar to the $1^{st}$design pump, optimum design and experiment were conducted. This paper describes experimental method and numerical analysis for pump design. At the blade design stage, performance analysis of the pump is conducted using commercial CFD codes ($BladeGen^+$,CFX-10). Required performance and cavitation characteristics of the design pumps were measured and observed using the stand-alone test apparatus. The weight of the pump was successfully decreased through a series of pump design processes composed of blade design, performance analysis and model test.