• 제목/요약/키워드: Water-treatment sludge

검색결과 631건 처리시간 0.027초

정수슬러지를 혼합한 경량토의 보강에 따른 강도 및 용출 특성 분석 (Strength and Leaching Characteristics of Water Sludge-added Lightweight Soil Considering Reinforcing Material and Layer)

  • 윤대호;이병헌;김윤태
    • 한국지반환경공학회 논문집
    • /
    • 제13권8호
    • /
    • pp.75-84
    • /
    • 2012
  • 본 연구에서는 보강재료(폐어망, 본딩처리된 폐어망, 지오그리드)와 보강층수(1층 및 2층)에 따른 정수슬러지 혼합 경량토의 강도 및 용출 특성을 비구속압축시험과 용출시험을 통해 분석하였다. 정수슬러지가 혼합된 경량토는 정수슬러지, 시멘트, 저회를 유동성에 맞춰서 배합 제작되었다. 시험에 사용된 보강재료는 폐어망과 지오그리드이다. 흙입자와 폐어망 사이의 억물림을 증가시키기 위하여 본딩처리를 한 폐어망을 추가로 사용하였다. 정수슬러지가 혼합된 경량토에 대한 강도시험 결과 보강재료에 따른 강도증진은 폐어망, 본딩처리된 폐어망, 지오그리드 순으로 증가하였다. 또한 보강층수가 1층에서 2층으로 증가할수록 강도 역시 증가되는 경향을 나타내었다. 또한 정수슬러지를 혼합한 경량토에 대한 용출시험을 분석한 결과 환경부가 고시한 기준을 만족하는 것으로 나타났다.

FUNDAMENTAL STUDY ON THE RECOVERY AND REMOVAL OF WHITE PHOSPHORUS FROM PHOSPHORUS SLUDGE

  • Jung, Joon-Oh
    • Environmental Engineering Research
    • /
    • 제10권1호
    • /
    • pp.38-44
    • /
    • 2005
  • Electro-thermal production of white phosphorus(WP, P4) generates substantial amount of highly toxic phossy water and sludges. Because of their high phosphorus contents and lack of reliable processing technology, large tonnages of these hazardous wastes have accumulated from current and past operations in the United States. In this study, two different methods for treatment of phosphorus sludge were investigated. These were bulk removal of WP by physical separation(froth flotation) and transformation of WP to oxyphosphorus compounds by air oxidation in the sludge medium. Kerosene, among other collectors, resulted in selective flotation of WP from the associated mineral gangue. Solvent action of kerosene occurring on the WP surface(by rendering WP particles hydrophobic) might produce the high selectivity of WP. The WP recovery in the froth was 79.3% from a sludge assaying 34.2% of WP. In the oxidation study, air gas was dispersed in the sludge medium by the rapid rotation of the impeller blades. The high level of sludge agitation intensity caused a fast completion of the oxidation reactions and it resulted in the high percentage conversion of WP to PO4-3 with PO3-3 making up almost all portion of oxyphosphorus compounds. The WP analysis on the treated sludge showed that supernatant solution and solid residue contained an average of 4.2 μg/L and 143 ppm respectively from the sludge containing about 26 g of WP. Further investigation will be required on operational factors to better understand the processes and achieve an optimum condition.

고도(高度) 하수처리(下水處理) 시스템의 처리성능 및 경제성 평가에 관한 연구 (Evaluation of Performance and Economical Efficiency of the Advanced Wastewater Treatment System)

  • 김동하
    • 상하수도학회지
    • /
    • 제13권1호
    • /
    • pp.61-71
    • /
    • 1999
  • For a high-rate fermentation and recovery of organic acid, we have developed a new organic acid fermentation reactor with membrane filter, which is the most important part in the new advanced wastewater treatment system. The recovered organic acid is to be reused as an organic carbon source at denitrification process. Some experiments were conducted to compare the performance of acid fermentation at different SRTs, such as 5, 10, and 20 days. The total organic acid concentration produced during the runs was in the range of 2,100-2,900 (mgC/L). The conversion efficiency from substrate to organic acid reached to from 43% to 59%. The recovery rate of organic acid from substrate based on TOC was from 26% to 53%. Regardless of operational conditions, it has been able to maintain the membrane flux constantly, in the range of 0.4-0.46 ($m^3/m^2/day$). The transmembrane pressure drop was 0.2-0.3 (kg/cm) for 100 day's operation. The result of simulation is as follows. Organic removal efficiency of the new advanced treatment system is 95%. 73% of Nitrogen is removed. The removal efficiency of Phosphorus is 93%. By coqulation, soluble phosphorus is able to remove from the water treatment lines, which is impossible at conventional activated sludge system. The unit construction cost is 65000 (yen/m3) and it was 1.4 times than that of the standard activated sludge system. The unit operation cast is 7.7 ($yen/m^3/day$) and it was 1.3 times than that of the standard activated sludge system.

  • PDF

전기응집을 이용한 2차 유출수의 질소.인 제거 공정 연구 (Removal of nitrogen and phosphorus of the secondary effluent by electro-coagulation)

  • 한송희;장인성
    • 상하수도학회지
    • /
    • 제26권4호
    • /
    • pp.579-589
    • /
    • 2012
  • To reduce extensive energy costs of the internal recycling for the purpose of denitrification in the advanced wastewater treatment, a post-treatment process using an electro-coagulation to treat nitrate in the secondary effluents is evaluated in this study. Removals of phosphorus and organics in the secondary effluents by the electro-coagulation were also evaluated to propose an alternative advanced wastewatert treatment process. A series of experiments of the electro-coagulation were carried out with the following 4 different samples: synthetic solution containing nitrate only, synthetic solution containing nitrate as well as phosphorus, secondary effluents from activated sludge cultivated in laboratory, and secondary effluents from real wastewater treatment plants. Removals of nitrate and phosphorus in the synthetic solution were 30 and 97 % respectively, which verified the feasibility of the process. Removals of nitrate, phosphorus and COD in the secondary effluents from the cultivated sludge in laboratory were 49, 90 and 19 % respectively. Removal efficiency of the total nitrogen, nitrrate, phosphorus and COD in the secondary effluent from real wastewater treatment plant were 50, 61, 98 and 80 % respectively. The removal of the total nitrogen was less than the nitrate as expected, which is due to the formation of ammonia nitrogen in the cathode. But the proposed scheme could be an energy saving and alternative process for the advanced wastewater treatment if further studies for the process optimization are carried out.

생물막 여과반응기를 이용한 고도질소 제거법의 개발 (Development of Biological Filtration Process for Effective Nitrogen Removal in Tertiary Treatment of Sewage)

  • 정진우;김성원;津野洋
    • 한국물환경학회지
    • /
    • 제22권2호
    • /
    • pp.222-229
    • /
    • 2006
  • The treatment performance and operational parameters of a tertiary wastewater treatment process a biological filtration system were investigated. The biological filtration system consisted of a nitrification filter (Fiter 1) and a polishing filter with anoxic and aerobic parts (Filter 2). SS, T-C-BOD, and T-N in effluent were kept stable at less than 3, 5 mg/L, and 5 mgN/L, respectively, under a HRT in Filter (filter-bed) of 0.37~2.3 h. T-N at the outlet of Filter 2 were about 1~5 mgN/L under the condition of LV of 50~202 m/d. In Filter 2, denitrification was accomplished under LV of 50~168 m/d in a 1 m filter-bed. However, the denitrification capacity reached the maximum when the linear velocity was increased to 202 m/d. Relationship between increase in microorganism and headloss was clearer in Filter 2. As a result, the denitrification rate increased from 1.0~2.3 kgN/($m^3-filter-bed{\cdot}d$) as the headloss increased. The COD removal rate was 6.0~9.6 kgCOD/($m^3-filter-bed{\cdot}d$) when operated with Filters 1 and 2. These results mean that captured bacteria contributed a part of COD consumption and denitrification. The maximum nitrification and denitrification rate was 0.5 and 4 kgN/($m^3-filter-bed{\cdot}d$) in Filter 1 and 2.The ratio of backwashing water to the treated water was about 5~10 %. In Filter 1, wasted sludge in backwashing was only 0.7~5.3 gSS/($m^3$-treated water). In Filter 2, added methanol was converted into sludge and its value was 8.0~24 gSS/($m^3$-treated water). These results proved that this process is both convenient to install as tertiary treatment and cost effective to build and operate.

공극개선재의 혼합비율에 따른 제지·하수슬러지의 퇴비화과정중 이화학성 변화 (Changes of Physicochemical Properties of Paper Mill Sludge and Sewage Sludge Mixed with Various Ratios of a Bulking Agent During Composting)

  • 유영석;장기운
    • 유기물자원화
    • /
    • 제6권2호
    • /
    • pp.45-57
    • /
    • 1998
  • 이 실험의 목적은 혼합된 제지 하수슬러지에 최적의 공극개선재로서 woodchips의 혼합비율을 설정하기 위한 것이다. 공극개선재는 제지슬러지와 하수슬러지(건물중 2:1)혼합물에 0(W-0), 20(W-20), 33(W-33), 50(W-50)%의 부피비로 혼합되었고 강제송풍에 의한 정체식으로 퇴비화를 실시하였다. 퇴비의 부숙도를 평가하기 위하여 이화학성 변화를 조사하였다. W-33과 W-50 처리구에서 온도는 퇴비화가 시작하자마자 상승하여 5일째 $60^{\circ}C$ 이상까지 이르렀다. 열수가용성 C/N율의 감소는 퇴비화 초기에 W-0과 W-20 처리구에 비해 W-33과 W-50 처리구에서 두드러졌다. 열수가용성 $NO_3{^-}-N$은 퇴비화 초기에 거의 변화를 보이지 않다가 퇴비화 20일 이후에 빠르게 증가하였으며 W-0 처리구가 그 증가량이 가장 적었다. G.I.값은 W-50 처리구에서 20일째, W-0은 30일째 이후 80이상으로 높아졌다. 이상의 결과를 토대로 공극개선재의 혼합은 33%이상이 합리적이었으나, 특히 W-50 처리구는 송풍에 의한 온도조절이 어려웠으며, 공극개선재의 구입 및 단가 그리고 생산되는 퇴비량을 고려한다면 공극개선재를 33% 혼합하는 것이 가장 이상적이다.

  • PDF

유입하수에 따른 BNR에서의 N과 P 제거율에 관한 연구 (Removal Ratio of Nitrogen & Phosphorus according to Sewage Inflow in the Biological Treatment(Biological Nutrient Removal)Process)

  • 이한섭;정광보;안성환;김경호;원성권
    • 한국응용과학기술학회지
    • /
    • 제31권4호
    • /
    • pp.669-678
    • /
    • 2014
  • The amount of waste water generated from the domestic sources is consistently increasing in proportion to economic growth, and the conventional activated sludge process is widely being used for general waste water treatment. But the ministry of environment becomes stringthent treatment standards of N and P (less than 20mg/L of N, 2mg/L of P) to prevent the eutrophication of lake water, and therefore highly advanced treatment technology is required not only in the existing treatment plants where the activated sludge process is being used, but also in newly constructed treatment plants for the treatment of N and P. This study is aimed at highly operating the engineering technology method was developed by domestic to eliminate N and P at the same time. Experiments were conducted in the treatment plant located in Yong In city. The bioreactor was started from the principal equipment for the elimination of N and P and the elimination of organic compounds. It consists of an internal recycle piping from the end of the aerobic tank to the anoxic tank and external recycle piping from the final settling basin to the denitrification tank. By experiment of 4 types separate inflow of waste water to the denitrification tank and the anaerobic tank, and changes in staying time at the anoxic tank and the aerobic tank, the elimination of organic compounds in each type and the relationship in the efficiency between the elimination of N and P were researched.

레미콘 세척수에 의한 토양의 중금속 오염 (Heavy Metal Contamination of Soil by Wash Water of Ready Mixed Concrete)

  • 오세욱;이봉직
    • 한국지반환경공학회 논문집
    • /
    • 제12권5호
    • /
    • pp.51-57
    • /
    • 2011
  • 일반적으로 레미콘(ready-mixed concrete(RMC))은 시간이 경과하면 굳게 되므로 드럼내부의 잔류 콘크리트를 세척해야만 한다. 이에 따라 발생하게 되는 레미콘 세척수는 일반 토양에 그대로 방류하게 될 경우 강한 알칼리성분과 중금속에 의한 수질오염으로 생태계에 영향을 미치게 된다. 레미콘 공장에서 세척수로 사용되는 물의 약 10~15%가 토양이나 하천으로 방류되고 있으나 이로 인한 구체적인 토양오염 보고는 미흡한 실정이다. 본 연구에서는 전국 레미콘공장의 세척수를 채취 분석하고 이를 여러가지 투수성을 가진 토양에 침투시켰을 때 토양에 잔류하는 중금속 성분과 pH성분을 분석하였다. 실험에 사용된 시료는 풍화토와 각각 입경이 다른 모래를 사용하였으며, 일정한 층 두께를 유지하고 24시간 동안 침투시켰다. 세척수는 침전 처리 전(슬러지수)과 침전처리 후(상등수)로 나누어 토양에 침투시켰으며, 슬러지수를 토양에 침투시킨 결과 Cu와 Mn, Fe, Zn이 23~90% 이상 잔류하는 것으로 나타났다. 그러나 침전 처리를 거친 상등수는 풍화토에서만 Cu와 Mn이 60%이상 잔류하는 것으로 분석되었다.

습식 화학적 방법에 의한 하수 슬러지 소각재에서의 인 회수 기술동향 (Trends of phosphorus recovery technology from sewage sludge ash by wet chemical method)

  • 이민수;김동진
    • 상하수도학회지
    • /
    • 제32권2호
    • /
    • pp.131-143
    • /
    • 2018
  • Phosphorus (P) is a limited, essential, and irreplaceable nutrient for the biological activity of all the living organisms. Sewage sludge ash (SSA) is one of the most important secondary P resources due to its high P content. The SSA has been intensively investigated to recover P by wet chemicals (acid or alkali). Even though $H_2SO_4$ was mainly used to extract P because of its low cost and accessibility, the formation of $CaSO_4$ (gypsum) hinders its use. Heavy metals in the SSA also cause a significant problem in P recovery since fertilizer needs to meet government standards for human health. Therefore, P recovery process with selective heavy metal removal needs to be developed. In this paper some of the most advanced P recovery processes have been introduced and discussed their technical characteristics. The results showed that further research is needed to identify the chemical mechanisms of P transformation in the recovery process and to increase P recovery efficiency and the yields.

마이크로버블오존을 이용한 잉여슬러지 가용화 처리가 생물반응조의 성능에 미치는 영향 (Effect of Microbubble Ozonation Process on Performance of Biological Reactor System for Excess Sludge Solubilisation)

  • 이순화;정계주;권진하;이세한
    • 대한환경공학회지
    • /
    • 제33권2호
    • /
    • pp.113-119
    • /
    • 2011
  • 오존을 이용한 잉여슬러지 감량화 시스템이 결합된 생물학적 처리 공정에서 잉여슬러지의 무배출에 따른 생물반응조내의 영향 및 처리수질을 검토하였다. 잉여슬러지 인발량 배수($SDN_{min}$)가 3인 조건에서 잉여슬러지의 pH를 4 이하로 전 처리한 후 오존주입율 0.03 g $O_3/g$ SS로 처리한 결과 잉여슬러지의 인발 없이 안정적인 생물학적 처리가 가능하였다. $OUR_{max}$ 실험 결과, 오존주입율 0.03 g $O_3/g$ SS의 조건에서 대부분의 슬러지는 미생물 활성이 없어지는 것으로 조사되었다. 잉여슬러지의 가용화에 따른 생물반응조내에서의 MLVSS/MLSS의 변화는 거의 없었고, 반응조내 미생물의 인 축적 현상도 관측되지 않았다. 잉여슬러지 가용화 후 생물학적 처리수의 유기물 및 SS의 농도 증가 현상은 관측되지 않았고, 생물반응조내의 질산화 및 탈질율 증가로 유출수중의 T-N 농도가 감소하는 효과를 나타내었다. T-P의 경우에는 잉여슬러지의 무배출로 인해 대부분이 제거되지 않고 유출수중에 함유되어 유출되는 것으로 조사되었다.