• 제목/요약/키워드: Water-treatment sludge

검색결과 629건 처리시간 0.02초

The Dissolution Characteristics of Metal Compounds in Soil Application Experiment using Sewage Treatment Sludge mixed with Oyster shells (하수슬러지 및 굴껍질의 토지주입시 금속성분의 용출특성에 관한 연구)

  • Kim, Chul;Moon, Jong-Ik;Shin, Nam-Cheol;Ha, Sang-An;Sung, Nak-Chang;Huh, Mock
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • 제9권2호
    • /
    • pp.71-76
    • /
    • 2001
  • Recently, sludge disposal becomes one of the most serious environmental problems. Because the landfilling and ocean dumping of sludge materials will be prohibited in the near future, the proper treatment?disposal methods should be investigated. Also, oyster shells, piled at the coast, cause adverse effects in coastal fishery, public water surface, natural landscape, public health and so on. Thus, the purpose of this study is to evaluate the dissolution characteristic of metal compounds during soil application experiment using sewage treatment sludge mixed with oyster shells. The dissolution experiment conducted 100days under artificial rainfall and farming soil, mixed with sewage treatment sludge and oyster shells, was put into the pots(approx. 0.5L). The results from dissolution experiment as follows. 1. K, Na was $5{\sim}20mg/{\ell}$, and Ca was less than $90mg/{\ell}$. 2. Heavy metals such as Cd, Cu, As, Pb, Cr, Hg are dissoluted far less than the soil pollution guideline. The application of sewage sludge mixed with oyster shells increases pH(soil acidity)and buffer capacity(CEC) of farming soil, and heavy metals are thought to be attached to soil as insoluble forms.

  • PDF

A study about treatment for water treatment residual sludge using submerged membrane system (침지식 막여과 공정을 이용한 정수장 배출수 처리에 관한 연구)

  • Kim, Jun-Hyun;Lee, Ju-Hyung;Moon, Baek-Su;Kwak, Young-Ju;Jang, Jung Woo;Kim, Jinho
    • Journal of Korean Society of Water and Wastewater
    • /
    • 제28권2호
    • /
    • pp.181-193
    • /
    • 2014
  • Various treatment system for residuals have applied to save water resources, but most of them were not be satisfied with legal standard consistently. In this study, submerged membrane treatment system was operated to treat water treatment plant residuals and operation parameters was evaluated. Result of this experiment, high concentration organic matters contributed to high increase Transmembrane pressure(TMP) of membrane system(from 0.05 bar to 0.35 bar). And backwash process was effective to stabilize membrane system operation. After Cleaning-In-Place(CIP), permeability was recovered about 100 % from first operation condition. Inorganic matters (Fe, Mn, Al, Ca, Mg) were not effective membrane filtration performance. The quality of residual treatment was satisfied with drinking water quality standard and a treated water from that system was suitable for water reuse.

Economic Design of Activated Sludge System at the Optimum Sludge Concentration (슬러지 농도 최적화에 따른 합리적인 활성슬러지공정 설계방안 연구)

  • Lee, Byung Joon;Choi, Yun Young
    • Journal of Korea Water Resources Association
    • /
    • 제47권5호
    • /
    • pp.483-490
    • /
    • 2014
  • The design procedures for a biological reactor and a secondary settling tank (SST) of an activated sludge system are based on the steady state design method (Ekama et al., 1986; WRC, 1984) and the 1-D flux theory design method (Ekama et al., 1997), respectively. This study combined both of the design procedures, to determine the optimum sludge concentration in the reactor and the best design with the lowest cost. The best design of the reactor volume and the SST diameter at the optimum sludge concentration were specified with varying wastewater and sludge characteristics, temperature, sludge retention time (SRT) and peak flow rate. The effects of the influent wastewater characteristics, such as substrate concentration and unbiodegradable particulate fraction, were found to be considerable, but the effect of unbiodegradable soluble fraction was to be negligible. The effects of sludge settling characteristics, were also significant. SRT, as an operating parameter, was found to be an important factor for determining the optimum sludge concentration. However, the effect of temperature was found to be small. Furthermore, for designing a large scale wastewater treatment plant, the number of reactors or SSTs could be estimated, by dividing the total reactor volume or SST area. The new combined design procedure, proposed in this research, will be able to allow engineers to provide the best design of an activated sludge system with the lowest cost.

Automatic control of coagulant dosage on the sedimentation and dissolved air flotation(SeDAF) process for enhanced phosphorus removal in sewage treatment facilities (하수처리시설에서 인 고도처리를 위한 일체형 침전부상공정(SeDAF)의 응집제 주입농도 자동제어기법 검토)

  • Jang, Yeoju;Jung, Jinhong;Kim, Weonjae
    • Journal of Korean Society of Water and Wastewater
    • /
    • 제34권6호
    • /
    • pp.411-423
    • /
    • 2020
  • To remove phosphorus from the effluent of public wastewater treatment facilities, hundreds of enhanced phosphorus treatment processes have been introduced nationwide. However, these processes have a few problems including excessive maintenance cost and sludge production caused by inappropriate coagulant injection. Therefore, the optimal decision of coagulant dosage and automatic control of coagulant injection are essential. To overcome the drawbacks of conventional phosphorus removal processes, the integrated sedimentation and dissolved air flotation(SeDAF) process has been developed and a demonstration plant(capacity: 100 ㎥/d) has also been installed. In this study, various jar-tests(sedimentation and / or sedimentation·flotation) and multiple regression analyses have been performed. Particularly, we have highlighted the decision-making algorithms of optimal coagulant dosage to improve the applicability of the SeDAF process. As a result, the sedimentation jar-test could be a simple and reliable method for the decision of appropriate coagulant dosage in field condition of the SeDAF process. And, we have found that the SeDAF process can save 30 - 40% of coagulant dosage compared with conventional sedimentation processes to achieve total phosphorus (T-P) concentration below 0.2 mg/L of treated water, and it can also reduce same portion of sludge production.

A Study on the Pyrolysis Processing for sludge disposal in sewage treatment plant (하수처리장내 슬러지 처리를 위한 열분해공정에 관한 연구)

  • Ha, Sang-An;Kim, Hyeoog-Seok;Sung, Nak-Chang
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • 제10권4호
    • /
    • pp.65-74
    • /
    • 2002
  • This Study was investigated operating condition of pyrolysis processing for sludge disposal in sewage treatment plant. Important parameters studied include running time of pyrolysis, run time of dry and pyrolysis processing, water content of sewage sludge, solids amount of sewage sludge(TS%), condition of pyrolysis temperature. Most degradation reaction of sewage sludge are first order, it assumed first order and elucidated the kinetics. This was the basis of characteristics analysis of sludge degradation mechanism. Also, with the increasing of temperature, how the yield of oil and char product change was observed, and the distribution of gas product components was observed. Main components of gas and carbon product are a little difference with pyrolysis temperature, but it consist of $CH_4$, $C_2H_4$, $C_3H_8$, $C_4H_{10}$, toluene, $C_6H_6$, $SO_2$, CO etc. The gas of $C_1-C_4$ yield increased along with degradation temperature of $670^{\circ}C$ and oil yield decreased of $C_6H_6$ and $C_6H_5OH$ with temperature of $600^{\circ}C$. Particularly, low value added char yield 134kg/t at $670^{\circ}C$, but increased to 194kg/t at pyrolysis temperature of $600^{\circ}C$. In the result of elementary analysis on it, it is mainly composed of carbon. From this fact, in pyrolysis of sludge, it comfirmed that carbonization reaction occur at high temperature well.

  • PDF

Treatment Technologies for Removal of Polybrominated Diphenyl Ethers (PBDEs) from Wastewater (하·폐수내 브롬화 디페닐 에테르(Polybrominated Diphenyl Ether, PBDEs)의 분포 및 제거기술 동향)

  • Kim, Minhee;Hyun, Seunghun;Lee, Won-Seok
    • Journal of Korean Society on Water Environment
    • /
    • 제33권6호
    • /
    • pp.754-768
    • /
    • 2017
  • Polybrominated diphenyl ethers (PBDEs) are a group of industrial aromatic organobromine chemicals that have been used since the 1970s as flame retardants in a wide range of consumer products and articles, including plastics, computers, textiles and upholstery. Commercial PBDEs were added to Annex A of the Stockholm Convention as persistent organic pollutants in May 2009. PBDEs are still frequently found in sludge and effluent from wastewater treatment plants, even though commercial PBDEs were prohibited or voluntarily phased out several years ago. Conventional wastewater treatment processes are not designed to effectively remove PBDEs. This indicates that there is an urgent need for new developments and improvements to enhance upon the treatment techniques which are currently available. Several studies have suggested the potential removal and degradation technologies for PBDEs in wastewater. In this study, the concentrations and compositional profiles of PBDE congeners in sludge and effluent are investigated by analyzing the relevant literature data in relation to their usage patterns in commercial products in North America and South Korea. The strengths and weaknesses of the current PBDEs removal techniques (i.e., biodegradation, zero-valent iron, photolysis, sorption, etc.) are discussed critically. In addition, future research direction regarding the treatment and removal of PBDEs from wastewater is also suggested, based on the literature review.

Analysis of Plant Growth Effects Using Seedling Pots Made from Paper Mill Sludges (제지슬러지 육묘 트레이를 이용한 식물 생육효과 분석)

  • Song, Dae-Bin;Bae, Eun-Ji;Kim, Chul-Hwan;Huh, Moo-Reung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • 제42권2호
    • /
    • pp.12-19
    • /
    • 2010
  • This study was carried out to explore the availability of seedling pots made from paper mill sludge using red pepper species called Nokkwang. The seedling pots were made by several conditions such as different mixing ratios between sludge and old newspaper (ONP), sterilizing treatment and latex coating. After 30 day cultivation in a green house, the growth condition of the red peppers was evaluated by comparison with those raised in the plastics seedling pots. The red peppers in the plastics pot showed a better growth than those in the sludge pots. Sterilizing treatment, latex coating and different mixing ratios between paper sludges and ONP did rarely affect a growth rate of the plant and the contents of inorganic elements. However, latex coating contributed to protection of physical structure of the sludge pots in spite of constant water feeding. Even though some inorganic elements from the sludge pots migrated into the bed soils, electronic conductivity of the bed soils was within the proper range for the plant growth. Finally it was confirmed that the seedling pots made from paper mill sludges could be used to cultivate horticultural plants as the alternative to the plastics pots.

Effects of Paper Mill Sludge in submerged Soil (제지(製紙)슬러지의 답토양(畓土壤) 시용효과(施用效果))

  • Choi, Jong Woo;Jo, Jeong Rye;Lee, Kyu Seung;Kim, Moon Kyu
    • Korean Journal of Agricultural Science
    • /
    • 제19권2호
    • /
    • pp.187-193
    • /
    • 1992
  • The effects of continuous restoration of sludge into the reclamating paddy soil and leaching test of sludge components by soil column were investigated. 1. The contents of nitrogen, phosphorus, potassium, C.E.C. and organic matter(O.M.) were increased in/on the paddy soil treated with paper mill sludge than non-treated. 2. Humic layer depth recognized by color showed the non-treated(10 cm), second year(15 cm) and third year(20 cm), respectively. 3. The effects of sludge treatment showed in the contents of O.M. such as non-treatment(0.9 %) < second year(1.39 %) < third year(1.75 %) in 10 cm depth. 4. All components in soil tested with column were increased by holding capacity of sludge, and the contamination effects of soil and ground water were not found by leaching test.

  • PDF

A Study on the 2-stage dry and pyrolysis system for reduction of sewage sludge (하수슬러지 감량화를 위한 one구동 2단형 열풍건조/열분해에 관한 연구)

  • Ha, Sang-An;Kim, Seung-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • 제12권2호
    • /
    • pp.52-60
    • /
    • 2004
  • The basic approach to sewage sludge is organic waste minimization, promotion of energy recovery; volume and weight reduction by final treatment, and environmentally final disposal of natural circulation. Dry and pyrolysis of maize was experimentally investigated in full-scale rotary kiln in semi-continuous operation. The operational parameters varied are the operating temperature $160{\sim}175^{\circ}C$ of dry and $450{\sim}800^{\circ}C$ of pyrolysis, the solids residence time 9 min for pyrolysis. Important parameters studied include the running time, water content of sewage sludge, solids amount of sewage sludge(TS%) by the varied temperature. Also, with the increasing of temperature, how the yield of oil and char product change was observed, and the distribution of gas production components was observed. The gas of $C_1{\sim}C_3$ yield increased and oil of $C_4{\sim}C_6$ yield decreased along with pyrolysis temperature of $670^{\circ}C$ by the run time of 9 min.

  • PDF

Effect of Gamma Irradiation on Physico-Chemical Characteristics and Ultimate Anaerobic Biodegradability of Sewage Sludge (감마선전처리에 따른 하수슬러지의 성상 변화 및 혐기성분해 특성 평가)

  • Kang, Ho;Na, Eun Kyoung;Lee, Myun Joo
    • Journal of Korean Society on Water Environment
    • /
    • 제20권4호
    • /
    • pp.327-332
    • /
    • 2004
  • This study was carried out to examine the effect of gamma irradiation on the physico-chemical characteristics and ultimate anaerobic biodegradability of sewage sludge. The results found that the solubilization rates of SCOD in wasted activated sludge(WAS) and thickened sludge(T-S) with gamma irradiation of 3kGy were 8 times and 7 times greater than these of the raw WAS and T-S without the irradiation, respectively; each soluble concentration protein were 4 times and 3 times greater than these of the raw WAS and T-S; each soluble carbohydrate concentration was 8 times and 6 times greater than these of the raw WAS and T-S. The ultimate anaerobic biodegradabilities of WAS and T-S with gamma irradiation were 51 % and 50%, which corresponds to each 8% and 10% greater than these of the raw sludges. Approximately 83% and 81% of the each biodegradable substrates in the irradiated WAS and the T-S were degraded within 11 days with the first order decay rate coefficients, $k_1$ that ranged $0.143{\sim}0.164day^{-1}$ for WAS and $0.134{\sim}0.152day^{-1}$ for T-S. Based on the results, it can be concluded that when irradiated with gamma the solubilization of sewage sludge greatly increases resulting in substrates suitable for the subsequent biological treatment processes.