• 제목/요약/키워드: Water-to-refrigerant

검색결과 211건 처리시간 0.022초

내경 6 mm 평관과 마이크로 핀관 내에서 R22 대체냉매의 흐름응축 열전달계수 (Flow Condensation Heat Transfer Coefficients of R22 Alternative Refrigerants in Plain and Microfin Tubes of 6.0 mm Inside Diameter)

  • 박기호;서영호;박기정;정동수
    • 설비공학논문집
    • /
    • 제16권5호
    • /
    • pp.444-451
    • /
    • 2004
  • Flow condensation heat transfer coefficients (HTCs) of R22, R134a, R407C, and R410A were measured on horizontal plain and microfin tubes. The experimental apparatus was composed of three main parts; a refrigerant loop, a water loop and a water/glycol loop. The test section in the refrigerant loop was made of both a plain and a microfin copper tube of 6.0∼6.16 mm inside diameter and 1.0 m length. Refrigerants were cooled by passing cold water through an annulus surrounding the test section. Tests were performed at a fixed refrigerant saturation temperature of 4$0^{\circ}C$ with mass fluxes of 100, 200, and 300 kg/m2s. Test results showed that at similar mass flux the flow condensation HTCs of R134a were similar to those of R22 for both plain and microfin tubes. On the other hand, HTCs of R407C were lower than those of R22 by 4∼16% and 16∼42% for plain and microfin tubes respectively. And HTCs of R410A were similar to those of R22 for a plain tube but lower than those of R22 by 3∼9% for a microfin tube. Heat transfer enhancement factors of a microfin tube were 1.3∼1.9.

대체냉매를 적용한 대형 압축식 냉동기의 만액식 증발기에 대한 성능 해석 (Performance Analysis of the Flooded Refrigerant Evaporators for Large Tonnage Compression-Type Refrigerators Using Alternative Refrigerants)

  • 김내현
    • 한국산학기술학회논문지
    • /
    • 제17권6호
    • /
    • pp.18-25
    • /
    • 2016
  • 대형 압축식 냉동기의 증발기 전열관으로는 그간 평활관이 주로 사용되어 왔으나 최근들어 비등 성능이 우수한 성형 가공관을 많이 사용하고 있다. 증발기는 관군으로 구성되고 따라서 증발기 내 위치에 따라 냉매 상태가 다르다. 특히 R-11, R-123과 같은 저압 냉매는 압력변화에 따른 포화온도 변화가 크므로 위치에 따라 포화온도가 다르게 된다. 따라서 증발기를 적절히 설계하려면 증발기 내 각 위치에서의 냉매의 상태를 적절히 예측하여야 한다. 본 연구에서는 대형 냉동기의 만액식 증발기를 모사할 수 있는 컴퓨터 프로그램을 개발하였다. 이 프로그램은 증발기를 미소 체적으로 구분하고 각 미소 체적에 적절한 관 내외측 열전달 및 압력손실 상관식을 적용하여 해석을 수행하였다. 본 프로그램을 R-123을 사용하는 T사의 만액식 증발기 해석에 적용한 결과 만족할 만한 결과를 얻었다. 이 프로그램을 이용하여 신 냉매인 R-123, R-134a를 사용하는 만액식 증발기의 해석을 수행하였고 특히 관군 세장비의 영향을 검토하였다.

암모니아-물 흡수식 시스템에서 유하액막식 발생기의 해석 (Analysis of Falling-film Generator in Ammonia-water Absorption System)

  • 김병주;손병후;구기갑
    • 설비공학논문집
    • /
    • 제13권5호
    • /
    • pp.422-430
    • /
    • 2001
  • In the present study, an evaporative generation process of ammonia-water solution film on the vertical plate was analysed. For the utilization of waste heat, hot water of low temperature was used as the heat source. The continuity, momentum, energy and diffusion equations for the solution film and vapor mixture were formulated in integral forms and solved numerically. Counter-current solution-vapor flow resulted in the refrigerant vapor of the higher ammonia concentration than that of co-current flow. Eve the rectification of refrigerant vapor was observed near the inlet of solution film in counter-current flow. For the optimum operation of generator using hot water, numerical experiments, based on the heat exchange and generation efficiencies. revealed the inter-relationships among the Reynolds number of the solution film and hot water, and the length of generator. Enhancement of heat and mass transport in the solution film was found to be very effective for the improvement of generation performance, especially at high solution flow rate.

  • PDF

프로필렌 냉매의 증발열전달 특성에 관한 실험적 연구 (Experimental Study on Heat Transfer Characteristics of Evaporation using Propylene Refrigerant)

  • 이호생;김재돌;정석권;윤정인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권5호
    • /
    • pp.754-761
    • /
    • 2004
  • In this paper, evaporating heat transfer characteristics in the refrigeration and air-conditioning facilities were studied using the environmentally friendly refrigerants R-1270 (Propylene). R-290 (Propane). R-600a (Iso-butane) and HCFC refrigerant R-22 The test tube was surrounded by an annulus with water flowing counter to the refrigerant. The tube is copper. with an outside diameter of 12.7mm and the wall thickness of 1.315mm. The test results showed that the local evaporating heat transfer coefficients of hydrocarbon refrigerants were superior to that of R-22 and the maximum increasing rate of heat transfer coefficient was found in R-1270. The average evaporating heat transfer coefficient increased with the increase of the mass velocity and it showed the higher values in hydrocarbon refrigerants than R-22 Comparing the heat transfer coefficient of experimental results with that of other correlations. the presented results had agood agreement with the Kandlikar's correlation. This results form the investigation can be used in the design of heat transfer exchangers using hydrocarbons as the refrigerant for the air-conditioning systems.

대체냉매 R430A를 적용한 정수기 냉동시스템의 성능 평가 (Performance of R430A on Refrigeration System of Domestic Water Purifiers)

  • 박기정;이요한;정동수;김경기
    • 설비공학논문집
    • /
    • 제21권2호
    • /
    • pp.109-117
    • /
    • 2009
  • In this study, thermodynamic performance of R430A is examined both numerically and experimentally in an effort to replace HFC134a used in the refrigeration system of domestic water purifiers. Even though HFC134a is used predominantly in such a system these days, it needs to be phased out in the near future in Europe and most of the developed countries due to its high global warming potential. To solve this problem, cycle simulation and experimental measurements are carried out with a new refrigerant mixture of 76%R152a124% R600a using actual domestic water purifiers. This mixture is numbered and listed as R430A by ASHRAE recently. Test results show that the system performance with R430A is greatly influenced by the amount of charge due to the small internal volume of the refrigeration system of the domestic water purifiers. With the optimum amount of charge of 21 to 22 grams, about 50% of HFC134a, the energy consumption of R430A is 13.4% lower than that of HFC 134a. The compressor dome and discharge temperatures and condenser center temperature of R430A are very similar to those of HFC134a at the optimum charge. Overall, R430A, a new long term environmentally safe refrigerant, is a good alternative for HFC134a requiring little change in the refrigeration system of the domestic water purifiers.

R435A를 적용한 정수기 냉동시스템의 성능평가 (Performance Evaluation of R435A on Refrigeration System of Water Purifiers)

  • 이요한;강동규;최현주;정동수
    • 한국태양에너지학회 논문집
    • /
    • 제33권1호
    • /
    • pp.15-23
    • /
    • 2013
  • In this study, thermodynamic performance of R435A is examined both numerically and experimentally in an effort to replace HFC134a used in the refrigeration system of domestic water purifiers. Even though HFC134a is used predominantly in such a system these days, it needs to be phased out in the near future in Europe and most of the developed countries due to its high global warming potential. To solve this problem, cycle simulation and experimental measurements are carried out with a new refrigerant mixture of 20%R152a/80%RE170 using actual domestic water purifiers. This mixture is numbered and listed as R435A by ASHRAE recently. Test results show that the system performance with R435A is greatly influenced by the amount of charge due to the small internal volume of the refrigeration system of the domestic water purifiers. With the optimum amount of charge of 21 to 22 grams, about 50% of HFC134a, the energy consumption of R435A is 11.8% lower than that of HFC134a. The compressor discharge temperature of R435A $8^{\circ}C$ lower than that of HFC134a at the optimum charge. Overall, R435A, a new long term environmentally safe refrigerant, is a good alternative for HFC134a requiring little change in the refrigeration system of the domestic water purifiers.

냉매 과냉각을 이용한 열펌프 시스템의 성능 특성 (The Performance Characteristics of Heat Pump Using the Refrigerant Subcooling)

  • 노건상;손창효
    • 한국수소및신에너지학회논문집
    • /
    • 제18권4호
    • /
    • pp.413-421
    • /
    • 2007
  • In this paper, the performance characteristics of heat pump system using a new refrigerant subcooling system designed for the study, are introduced. The new heat pump system have the ice storage tank at the outlet of condenser. The experimental apparatus is a well-instrumented water/water heat pump which consisted of working fluid loop, coolant loop, and ice storage tank. The experiment parameters of subcooling ranged as the evaporating temperature from $-5^{\circ}C$ to $8^{\circ}C$, the condensing temperature from $30^{\circ}C$ to $35^{\circ}C$. The test of the ice storage was carried out at evaporating temperature of $-10^{\circ}C$ and the ice storage mode is Ice-On-Coil type. The working fluid was R-22 and the storage materials were city-water. The test results obtained were as follows; The refrigerant mass flow rate and compressor shaft power were unchanged by the degrees of subcooling, that is, they were independent of degrees of subcooling. The cooling capacity of the new heat pump system increase as the evaporating temperature and subcooling degrees increase and is higher by $25{\sim}30%$, compared to the normal heat pump system. The COP of the new heat pump system increases as the degrees of subcooling and evaporating temperature increase and is higher by 28% than that of the normal heat pump system.

Effect of Flow Direction on Two-Phase Flow Distribution of Refrigerants at a T-Junction

  • Tae Sang-Jin;Cho Keum-Nam
    • Journal of Mechanical Science and Technology
    • /
    • 제20권5호
    • /
    • pp.717-727
    • /
    • 2006
  • The present study experimentally investigated the effect of flow direction and other flow parameters on two-phase flow distribution of refrigerants at a T-junction, and also suggested a prediction model for refrigerant in a T-junction by modifying previous model for air-water flow. R-22, R-134a, and R-410A were used as test refrigerants. As geometric parameters, the direction of the inlet or branch tube and the tube diameter ratio of branch to inlet tube were chosen. The measured data were compared with the values predicted by the models developed for air-water or steam-water mixture in the literature. We propose a modified model for application to the reduced T-junction and vertical tube orientation. Among the geometric parameters, the branch tube direction showed the biggest sensitivity to the mass flow rate ratio for the gas phase, while the inlet quality showed the biggest sensitivity to the mass flow rate ratio among the inlet flow parameters.

평관과 마이크로 핀관 내 R22, R134a, R407C, R410A의 흐름응축 열전달성능 (Flow Condensation Heat Transfer of R22, R134a, R407C, and R410A in Plain and Microfin Tubes)

  • 조영목;박기호;송길흥;정동수
    • 설비공학논문집
    • /
    • 제14권8호
    • /
    • pp.656-663
    • /
    • 2002
  • Flow condensation heat transfer coefficients (HTCs) of R22, R134a, R407C, and R410A were measured on horizontal plain and microfin tubes. The experimental apparatus was composed of three main parts; a refrigerant loop, a water loop and a water/glycol loop. The test section in the refrigerant loop was made of both a plain and a microfin copper tube of 9.52 mm outside diameter and 1.0 m length. The refrigerant was cooled by passing cold water through an annulus surrounding the test section. Tests were performed at a fixed refrigerant saturation temperature of $40^{\circ}C$ with mass fluxes of 100, 200, and 300 kg/$m^2s$. Test results showed that at similar mass flux the flow condensation HTCs of R134a were similar to those of R22 for both plain and microfin tubes. On the other hand, HTCs of R407C were lower than those of R22 by 11~l5% and 23~53% for plain and microfin tubes respectively. And HTCs of R410A were similar to those of R22 for a plain tube but lower than those of R22 by 10~21% for a microfin tube. In general, HTCs of a microfin tube were 2.0~3.0 times higher than those of a plain tube.

온배수를 이용한 혼합냉매용 해양온도차 발전 사이클의 성능 특성 (Performance Characteristics of a Mixed Refrigerant OTEC Power Cycle Using Hot Waste Water)

  • 윤정인;손창효;허정호;예병효;김현주;이호생
    • 동력기계공학회지
    • /
    • 제17권6호
    • /
    • pp.102-107
    • /
    • 2013
  • In this paper, the performance analysis for evaporation capacity, total work and efficiency of the ocean thermal energy conversion(OTEC) power system using mixed refrigerant(R32,R152a) is conducted to find the effect of hot wasted water on OTEC power system. The system in this study is applied with two stage turbine, regenerator, cooler and separator on Organic Rankine Cycle. The commercial program HYSYS is used for the performance analysis. The main results were summarized as follows : The efficiency of the OTEC power cycle has a largely effect on the evaporation capacity and total work. As increasing temperature of heat source water, evaporator's capacity is decreased but total work increase. Otherwise, using hot wasted water bring effects not only increasing system efficiency but also declining evaporator's capacity. Thus With a thorough grasp of these effect, it is necessary to find way to use hot wasted water emitted by power plant and so on.