• Title/Summary/Keyword: Water-surface

Search Result 12,519, Processing Time 0.04 seconds

The influence of commercially available carbonated water on the surface of denture based resin (국내 시판 탄산수가 의치상용 레진의 표면에 미치는 영향)

  • Kim, Hee-Kyoung;Kim, Myung-Eun
    • Journal of Korean society of Dental Hygiene
    • /
    • v.21 no.6
    • /
    • pp.703-710
    • /
    • 2021
  • Objectives: The purpose of this study was to confirm the influence of commercially available carbonated water on denture resin by confirming the changes in the denture surface and adhesion of bacteria. Methods: Carbonated water available in the domestic market was used on specimens made of prosthetic resins. The top four products with respect to sales performance was deposited for 30 min, 24 h, and 48 h over the study groups and over one control group. The surface roughness was measured. Candida albicans was inoculated and cultured over these dentures at 37℃ on the study groups of 1 h, 24 h, and 48 h, and the number of colonies formed was measured. Results: As a result of comparing the surface roughness between groups by immersion time, the difference between groups was confirmed at 48 hours. The Trevi group showed a larger Rz than the Samdasoo group. As a result of comparing the surface roughness by time in each group, statistical significance was shown in the Ra value of the Seagram and the Rz value of the Chojung sparkling water (p<0.05). The Ra value of the Seagram was higher for 48 h than for 30 min, and the Rz value of the Chojung sparkling water was higher at 48 h than at 30 min (p<0.05). Candida albicans concentration increased over the course of immersion. Conclusions: It was confirmed that longer the specimen of the denture resin was immersed in carbonated water, more the surface roughness was affected and higher the number of attached bacteria.

Reorientation of Colloidal Crystalline Domains by a Thinning Meniscus

  • Im, Sang-Hyuk;Park, O-Ok
    • Macromolecular Research
    • /
    • v.12 no.2
    • /
    • pp.189-194
    • /
    • 2004
  • When water is evaporated quickly from a water-based colloidal suspension, colloidal particles protrude from the water surface, distorting it and generating lateral capillary forces between the colloidal particles. The protruded colloidal particles are then assembled into ordered colloidal crystalline domains that float on the water surface on account of their having a lower effective density than water. These colloidal crystal domains then assemble together by lateral capillary force and convective flow; the generated colloidal crystal has grain boundaries. The single domain size of the colloidal crystal could be controlled, to some extent, by changing the rate of water evaporation, but it seems very difficult to fabricate a single crystal over a large area of the water's surface without reorienting each colloidal crystal domain. To reorient such colloidal crystal domains, a glass plate was dipped into the colloidal suspension at a tilted angle because the meniscus (airwaterglass plate interface) is pinned and thinned by further water evaporation. The thinning meniscus generated a shear force and reoriented the colloidal crystalline domains into a single domain.

Assessment of seasonal variations in water quality of Brahmani river using PCA

  • Mohanty, Chitta R.;Nayak, Saroj K.
    • Advances in environmental research
    • /
    • v.6 no.1
    • /
    • pp.53-65
    • /
    • 2017
  • Assessment of seasonal changes in surface water quality is an important aspect for evaluating temporal variations of river pollution due to natural or anthropogenic inputs of point and non-point sources. In this study, surface water quality data for 15 physico-chemical parameters collected from 7 monitoring stations in a river during the years from 2014 to 2016 were analyzed. The principal component analysis technique was employed to evaluate the seasonal correlations of water quality parameters, while the principal factor analysis technique was used to extract the parameters that are most important in assessing seasonal variations of river water quality. Analysis shows that a parameter that is most important in contributing to water quality variation for one season may not be important for another season except alkalinity, which is always the most important parameters in contributing to water quality variations for all three seasons.

The Characteristic of Hydrogen Generation on the Structure of Plasma Reactor Using the Streamer Discharge in the Water (수중 스트리머 방전용 플라즈마 반응기 구조에서 수소발생 특성)

  • Park, Jae-Youn;Kim, Jong-Seok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.4
    • /
    • pp.37-42
    • /
    • 2006
  • The effect of arc like streamer discharge is investigated on the hydrogen generation using the multineedle-plate electrode geometry plasma realtor(MPER) and the needle-plate electrode geometry plasma reactor(NPER). In order to restrict waves at the water surface when the high voltage applied, two kinds of the insulator such as the rectangular mesh or the hole mesh type are installed under the water surface. The discharge assistant of the two type(the saw type and the $TiO_2$ pellet type) was placed under the water surface to investigate the effect of the water surface conditions. The experimental results are compared in case of the reactor with and without the discharge assistant on the water surface.

A Study on Characteristics of Surface Water and Soil in Wangdungjae Wetland Located at Chiri-Mountain (지리산 왕등재 습지의 지표수 수질 및 토양 환경조사)

  • Kim, Jong-Oh;Lee, Chang-Ho;Ji, In-ju
    • Journal of Wetlands Research
    • /
    • v.3 no.1
    • /
    • pp.61-73
    • /
    • 2001
  • This study was performed to survey the characteristics of surface water and soil in Wangdungjae wetland located at Chiri-Mountain. The results of survey summarized as follows; 1. The physico-chemical characteristics of surface water such as pH, temperature, and DO were in the range of 6.02-6.39, $13.5-24.3^{\circ}C$ and 3.81-9.97 mg/L, respectively. Also, the organic concentrations such as BOD and COD were in the range of 1.3-1.61 mg/L and 3.55-9.97 mg/L, respectively. The water quality of five different sampling sites showed the similar characteristics. 2. The physico- chemical characteristics of soil showed the different properties with the soil sampling depth. According to increasing sampling depth, cation exchange capacity (CEC) and electric conductivity (EC) increased but pH decreased. 3. The future survey and researches on surface water and soil environments are needed to preserve the Wangdungjae wetland at Chiri-mountain marsh.

  • PDF

Study on Antibiotic Resistant Bacteria in Surface Water Receiving Pharmaceutical Complex Effluent (제약공단 방류수 유입 하천에서의 항생제 내성 bacteria에 관한 연구)

  • Kim, Young Jin;Kim, Young Gyu
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.6
    • /
    • pp.409-418
    • /
    • 2016
  • Objectives: The purpose of this study was to characterize penicillin G resistant bacteria in surface water from pharmaceutical complex effluent. Methods: Surface water was sampled from pharmaceutical complex effluent in Gyeonggi-do Province, Korea in March 2015. Water samples were plated in triplicate on tryptic soy agar plates with 32 mg/L of penicillin G. Penicillin G resistant bacteria were selected from the effluent and subjected to 16S rRNA analysis for the penicillin G resistant species determination. Identified resistant strains were tested for resistance to various antibiotics. Results: Penicillin G resistant bacteria were present at 8.0% in terms of culturable heterotrophic bacteria. Identified penicillin G resistant bacteria exhibited resistance to more than nine of the antibiotics studied. These resistant bacteria are gram negative and are closely related to pathogenic species. Conclusion: Multi-antibiotic resistant bacteria in the surface water of pharmaceutical complex effluent suggest the need for disinfection and advanced oxidation processed for pharmaceutical effluent.

Surface-attached Solid Dispersion

  • Park, Young-Joon;Oh, Dong-Hoon;Yan, Yi-Dong;Seo, Yoon-Gee;Lee, Sung-Neug;Choi, Han-Gon;Yong, Chul-Soon
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.spc
    • /
    • pp.97-102
    • /
    • 2010
  • A novel surface-attached solid dispersion is designed to improve the solubility and oral bioavailability of poorly water-soluble drugs without crystalline change. Accordingly, it draws increasing interest because of excellent stability and no pollution for accomplishing enhanced solubility and bioavailability, which have recently been highlighted in connection with a number of higher value-added poorly water-soluble drugs. In addition, excellent stability can be attained when the poorly water-soluble drugs are not dissolved but dispersed in water and provide no crystallinity change. This solid dispersion is given by means of attaching the dissolved carriers such as hydrophilic polymer and surfactant to the surface of dispersed drug particles followed by changing the hydrophobic drug to hydrophilic form. The aim of the present review is to outline the preparation, physicochemical property and bioavailability of novel surface-attached solid dispersion with improved solubility and bioavailability of poorly water-soluble drugs without crystalline change.

PREDICTION OF FREE SURFACE FLOW ON CONTAINMENT FLOOR USING A SHALLOW WATER EQUATION SOLVER

  • Bang, Young-Seok;Lee, Gil-Soo;Huh, Byung-Gil;Oh, Deog-Yeon;Woo, Sweng-Woong
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1045-1052
    • /
    • 2009
  • A calculation model is developed to predict the transient free surface flow on the containment floor following a loss-of-coolant accident (LOCA) of pressurized water reactors (PWR) for the use of debris transport evaluation. The model solves the two-dimensional Shallow Water Equation (SWE) using a finite volume method (FVM) with unstructured triangular meshes. The numerical scheme is based on a fully explicit predictor-corrector method to achieve a fast-running capability and numerical accuracy. The Harten-Lax-van Leer (HLL) scheme is used to reserve a shock-capturing capability in determining the convective flux term at the cell interface where the dry-to-wet changing proceeds. An experiment simulating a sudden break of a water reservoir with L-shape open channel is calculated for validation of the present model. It is shown that the present model agrees well with the experiment data, thus it can be justified for the free surface flow with accuracy. From the calculation of flow field over the simplified containment floor of APR1400, the important phenomena of free surface flow including propagations and interactions of waves generated by local water level distribution and reflection with a solid wall are found and the transient flow rates entering the Holdup Volume Tank (HVT) are obtained within a practical computational resource.

Stream Flow Analysis of Dry Stream on Flood Runoff in Islands (도서지역 건천의 홍수유출 시 흐름 해석)

  • Yang, Won-Seok;Yang, Sung-Kee
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.571-580
    • /
    • 2013
  • In this study, compared with the result of water surface elevation and water velocity on the establishment of river maintenance basic plan and result of HEC-GeoRAS based GIS, and after use the result of water surface elevation and velocity were observed in the Han stream on Jeju island, analysis 2 dimensional stream flow. the lateral hydraulic characteristics and curved channel of the stream were analyzed by applying SMS-RMA2 a 2 dimensional model. The results of the analysis using HEC-RAS model and HEC-GeoRAS model indicated that the distribution ranges of water surface elevation and water velocity were similar, but the water surface elevation by section showed a difference of 0.7~2.18 EL.m and 0.63~1.16 EL.m respectively, and water velocity also showed differences of maximum 1.58m/sec and 2.67m/sec. SMS-RMA2 analysis was done with the sphere of Muifa the typhoon as a boundary condition, and as a result, water velocity distribution was found to be 1.19 through 3.91 m/sec, and the difference of lateral water velocity in No. 97 through 99 the curved channel of the stream was analyzed to be 1.59 through 2.36 m/sec. In conclusion it is anticipated that the flow analysis of 2 dimension model of stream can reflect the hydraulic characteristics of the stream curved channel or width and shape, and can be applied effectively in the establishment of river maintenance basic plan or management and designing of stream.

A study on the algal growth-related water quality of the Dongbok laka

  • Kim, Jong-Min;Kim, Hyun-Ku;Huh, Yu-Jeong;Jeong, Jong-Bum
    • Proceedings of the Korea Society of Environmental Biology Conference
    • /
    • 2004.05a
    • /
    • pp.25-25
    • /
    • 2004
  • We studied algal growth-related water quality of the Dongbok lake which is the drinking water reservoir for the Gwangju municipality. Peridinium cinctum and several diatomic algal species frequently caused water bloom throughout the lake from early spring to late autumn. With the heaviest predominance of Peridinium cintum in May 2003, COD was 13.7 mg/I in the surface layer. Highly turbid surface water with 46.8 mg/I of SS was also caused by Perdinium bloom. Peridinium bloom decisively eliminated cyanobacterial growth in the lake, otherwise cyanobacterial bloom resulted. Dense algal layer was confined in the upper several meters of the water column above the thermocline, which gives relatively algae-free water in deeper layer suitable for drinking source water supply. Upon collapse of thermocline, water quality of the surface layer was improved while deeper layer was deteriorated in terms of water quality. This paper deals with some details of water quality changes with algal growth in the Dongbok lake past two years.

  • PDF