• Title/Summary/Keyword: Water-soluble salt

Search Result 260, Processing Time 0.031 seconds

NON-ENZYMATIC BROWNING REACTIONS IN DRIED ANCHOVY WHEN STORED AT DIFFERENT WATER ACTIVITIES (마른멸치 저장중의 수분활성과 비효소적 갈변반응)

  • HAN Seong-Bin;LEE Jong-Ho;LEE Kang-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.6 no.1_2
    • /
    • pp.37-43
    • /
    • 1973
  • In this paper, non-enzymatic browning reactions as a factor of self stability of boiled and dried anchovy were studied to discuss the effect of water activity to the discoloring reaction and the preservative moisture content. The development of rancidity of the fish meat was also mentioned since the fish is fatty and the lipid oxidation is a functional deteriorative reaction. Fresh anchovies were boiled in $10\%$ salt solution immediately after the catch, sun dried, and stored at room temperature ($20^{\circ}C$) for two months in humidistat chambers maintaining different levels of water activity as described in Table 1. The pigments formed by non-enzymatic browning reations were extracted in two fractions, those were chloroform-methanol soluble and water dialyzed fraction, and analyzed spectrophotometrically at the wavelength of 460 nm. These two fractions were considered, respectively to be the brown pigments formed by lipid oxidation reactions for the formler and for the latter, to be the pigments developed by sugar-amino or Maillard reaction. The oxidation of lipid in anchovy meat during the storage was measured as the changes in Peroxide value and the color development of thiobarbituric acid reaction. It is summarized from the results that the rate of both reactions, lipid oxidation and browning, was affected by water activity levels. In regard to the changes in peroxide and TBA value during the storage, the propagation of lipid oxidation was obviously accelerated at lower humidities whereas the development of browning progressed at the higher. These two reactions occurring simultaneously and contrary in activity resulted in that the rate of deterioration occurring oxidatively or by browning, was the minimum at the water activity of 0.32-0.45 which were $7-9\%$ as moisture content and slightly higher value than that of monolayer (Aw=0.21, $5.11\%$ as moisture content). It is also noted that the lipid oxidative browning was presumed to dominate sugar-amino reactions so that the rate of browning of the meat was ultimately depended on the development of rancidity although sugar-amino reactions initiated earlier than the other at the first ten days of storage, particulary at higher humidity. At the lower humidity sugar-amino reactions were occurred gradually but lower levels in color development in contrast to the consistent increase in lipid oxidative browning.

  • PDF

Comparison of Antioxidant Activities of Pileus and Stipe from White Beech Mushrooms (Hypsizygus marmoreus) (부위별 흰색 느티만가닥버섯 추출물의 항산화 활성)

  • Kim, Su Cheol;Kwon, Hyun Sook;Kim, Chul Hwan;Kim, Hye Soo;Lee, Chang Yun;Cho, Soo Jeong
    • Journal of Life Science
    • /
    • v.26 no.8
    • /
    • pp.928-935
    • /
    • 2016
  • Hypsizygus marmoreus (white cultivar), also called white beech mushrooms, are edible mushrooms commercially cultivated in Korea and Japan. This study was carried out to evaluate the antioxidant properties of H. marmoreus. H. marmoreus fruit bodies were divided into pileus and stipe. The pileus and stipe were extracted into water and 80% ethanol and their antioxidant activities were analyzed. The total polyphenol content was highest in the water extract (pileus 1137.39±0.38 mg of GAE (gallic acid equivalents)/100 g, stipe 700.86±0.06 mg of GAE/100 g) compared to the ethanol extract (pileus 923.47±0.18 mg of GAE/ 100 g, stipe 324.05±0.03 mg of GAE/100 g). Ethanol extracts from pileus showed better scavenging ability on DPPH (47.32±0.23% at 10 mg/ml) and ABTS (57.33±0.10% at 10 mg/ml) than the stipe and water extract groups. Water extract from pileus were more effective in reducing power and ORAC (oxygen radical absorbance capacity) value than stipe and ethanol extract. The toxicity of water and ethanol extracts was investigated using WST-1 (Water Soluble Tetrazolium salt) assay on the mouse macrophage cell line RAW 264.7. Overall, total polyphenol content and antioxidant activities of extracts from H. marmoreus increased in a dose dependent manner while pileus was showed better total polyphenol content and antioxidant activities than stipe.

The Influences of Rice Straw and Gypsum Applied to a Saline Soil on the Growth Status of rice Seedlings when Flooded Direct Sowing (볏짚 및 석고시용(石膏施用)이 간척답(干拓畓) 직파(直播)벼의 초기생육(初期生育) 장해(障害)에 미치는 영향(影響))

  • Hwang, Seon-Woong;Lee, Choon-Soo;Lee, Yong-Jae;Kwak, Han-Kang;Park, Nae-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.1
    • /
    • pp.34-39
    • /
    • 1990
  • The experiment was conducted in the pots of flooded saline paddy soil to evaluate influence of rice straw and gypsum application on germination and early growth status of directly sowed rice seedlings. 1. Germination percentage of rice seedlings were higher in treatment sowing at 1 day after submergence than that of treatment sowing at 21 days after submergence, and was severely interrupted by rice straw application. 2. Application of rice straw promoted the release of bicarbonate and volatile fatty acid of submerged water, while the amount of sulfate and soluble cations were decreased as compared to control. 3. Germination percentage of rice seedling had significant negative correlations with chemical characters of submerged water, and was highly affected by submerged water at 7 days after sowing. 4. Rice straw application interrupted germination of rice seedling by increasing pH of submerged water over critical level, and gypsum application depressed the early growth of young seedling dues to high salt concentration. 5. The relaease of bicarbonate was remarkedly increased with increasing pH over 7.5 of submerged water.

  • PDF

Studies on the Development of Food Resources from Waste Seeds V. Chemical Composition of Water-melon Seed (폐기종실(廢棄種實)의 식량자원화(食糧資源化)에 관(關)하여 제(第)5보(報) : 수박씨의 화학적(化學的) 조성(組成))

  • Yoon, Hyung Sik;Kwon, Joong Ho;Hwang, Joo Ho;Bae, Man Jong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.12 no.3
    • /
    • pp.207-211
    • /
    • 1983
  • An attempt was made to find out the possibility of utilizing water-melon seed as resources of food fats and protein. The water-melon seed contained 40.40% of crude fat and 28.36% of crude protein. The lipid fraction obtained by silicic acid column chromatography was composed of about 97.35% neutral lipid, and the main components of neutral lipid by thin layer chromatography were triglyceride(50.40%), diglyceride(21.84%) and sterol(11.48%). The predominant fatty acids of total and major lipid classes were linoleic acid(55.30-67.85%), palmitic acid(12.07-28.12%) and oleic acid(9.06-16.40%), whereas stearic acid and linolenic acid were detected as small amounts. The salt soluble protein of watermelon seed was highly dispersible in 0.02M sodium phosphate buffer containing about 0.7M $MgSO_4$, and the extractability of seed protein was about 27%. Glutamic acid and arginine were major amino acids, and the essential amino acids such as lysine, threonine, valine, methionine, isoleucine, leucine and phenylalanine were also detected. The electrophoretic analysis showed 6 bands in water-melon seed protein, and the collection rate of the main protein fraction purified by sephadex G-100 and G-200 was 52.4%. The amino acids of the main fraction protein were also mainly composed of glutamic acid and arginine. The molecular weight for the main protein of the water-melon seed was estimated to be 120,000.

  • PDF

Ecophysiological Characteristics of Chenopodiaceous Plants - An Approach through Inorganic and Organic Solutes - (명아주과 식물의 생리생태학적 특성 - 무기 및 유기용질을 통한 접근 -)

  • Choo, Yeon-Sik;Song, Seung-Dal
    • The Korean Journal of Ecology
    • /
    • v.23 no.5
    • /
    • pp.397-406
    • /
    • 2000
  • In order to clarify the ecophysiological characteristics of Chenopodiaceae which widely distribute on saline and arid habitats, we collected 10 chenopodiaceous plant species, examined their inorganic and organic solute patterns, and confirmed several common physiological characteristics. In spite of high soil Ca/sup 2+/ contents, chenopodiaceous plants had a little water-soluble Ca within cells, but contained high contents of acid-soluble Ca particularly as a result of Ca-oxalate formation. These plant species also showed accumulation of inorganic ions such as K/sup +/, NO₃/sup -/ and Cl/sup -/, and Na/sup +/especially in saline habitats instead of K/sup +/ Meanwhile, with respect to nitrogen metabolism they retained high N contents in leaves, but showed very low amino acid contents. Additionally, they contained very little proline known to act as a cytoplasmic osmolyte. To ascertain whether this physiological characteristics in the field also can be found under controlled conditions, 7 chenopodiaceous plants (Atriplex gmelini, Corispermum stauntonii, Salicornia herbacea, Suaeda aspayagoides, Suaeda japonica, Chenopodium album var. centrorubrum, C. serotinum) were selected and cultivated under salt treatments. As well as field-grown plants, selected plant species showed similar solute pattern in growth experiment. In summary, the family of Chenopodiaceae represents the following physiological properties; high storage capacity for inorganic ions (especially alkali cations, nitrate and chloride), oxalate synthesis to maintain lower soluble Ca contents within cytoplasm, and low contents of amino acids. In addition to some characteristics mentioned above, the physiological plasticities of Chenopodiaceae which can properly regulate their ion and solute pattern according to soil conditions may enable its representative to grow in dry sand dune and salt marsh habitats.

  • PDF

Improved Dissolution of Solid Dispersed Atorvastatin Using Spray-Dryer (분무건조기를 이용한 아토르바스타틴 고체분산체의 용출율 개선)

  • Lee, Jun-Hee;Kim, Dae-Sung;Kim, Won;Park, Jong-Hak;Ahn, Sik-Il;Kim, Yun-Tae;Rhee, John-M.;Khang, Gil-Son
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.4
    • /
    • pp.249-254
    • /
    • 2008
  • Solid dispersions of poorly water-soluble drug, atorvastatin, were prepared with Eudragit L100 to improve the solubility by spray dryer. To investigate the correlation between physicochemical properties and dissolution rate of solid dispersions, the samples were characterized by scanning electron microscopy (SEM), differential scanning calorimeter (DSC) and fourier transform infrared spectroscopy (FT-IR). SEM and DSC were found that atorvastatin is amorphous in the Eudragit L100 solid dispersion. FT-IR was used to analyze the salt formation by interaction between atorvastatin and Eudragit L100. The dissolution rate of solid dispersed atorvastatin was markedly increased compared to drug powder in stimulated intestinal juice (pH 6.8). Thus, the solid dispersed atorvastatin using the spray drying method with Eudragit L100 may be effective for the bioavailability.

Evaluation of Boar Sperm Viability by MTT Reduction Assay in Beltsville Thawing Solution Extender

  • Byuna, J.W.;Choo, S.H.;Kim, H.H.;Kim, Y.J.;Hwang, Y.J.;Kim, D.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.4
    • /
    • pp.494-498
    • /
    • 2008
  • MTT (3-(4, 5-dimethyl thiazol-2-yl)-2, 5-diphenyl tetrazolium bromide) reduction assay is a method that validates the viability of an active cell. Dehydrogenase in mitochondria converts yellow colored insoluble tetrazolium salt to purple colored water-soluble formazan. Sperm also have mitochondria in the midpiece, therefore sperm viability could be evaluated by MTT reduction assay. Several studies have already demonstrated the capability of application of the MTT reduction assay to sperm of several species in Hepes-BSA buffer. Because most liquid semen was diluted in extender like BTS (Beltsville Thawing Solution), Modena or Androhep when it is used or transferred, semen needed another dilution in Hepes-BSA buffer to assess sperm viability. In this study, we evaluated boar sperm viability especially in BTS extended semen and compared the efficiency of this test with eosin-nigrosin staining. We used the fresh BTS extended semen from a local A.I center. Semen sample was diluted to $3.0{\times}10^7$ sperms/ml in BTS. The rates of formazan production were measured in 96-well microtiter plates immediately and 1h after incubation at $17^{\circ}C$ using a spectrophotometer at wave length 560 nm. Simultaneously, split samples of the same semen were tested, using eosin-nigrosin staining to compare the efficiency of the MTT assay of sperm viability in BTS. The correlation between the results of these tests was calculated using Student-t test and ANOVA. The results revealed a strong correlation between the results of MTT reduction rate and the results that were simultaneously determined by eosin-nigrosin staining at 1 h. In conclusion, the MTT reduction test was an effective and simple method to validate sperm viability and it could be used as a simple tool to evaluate sperm viability in the local A.I center and laboratory.

Development of a cell-laden thermosensitive chitosan bioink for 3D bioprinting

  • Ku, Jongbeom;Seonwoo, Hoon;Jang, Kyoung-Je;Park, Sangbae;Chung, Jong Hoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.107-107
    • /
    • 2017
  • 3D bioprinting is a technology to produce complex tissue constructs through printing living cells with hydrogel in a layer-by-layer process. To produce more stable 3D cell-laden structures, various materials have been developed such as alginate, fibrin and gelatin. However, most of these hydrogels are chemically bound using crosslinkers which can cause some problems in cytotoxicity and cell viability. On the other hand, thermosensitive hydrogels are physically cross-linked by non-covalent interaction without crosslinker, facilitating stable cytotoxicity and cell viability. The examples of currently reported thermosensitive hydrogels are poly(ethylene glycol)/poly(propylene glycol)/poly(ethylene glycol) (PEG-PPG-PEG) and poly(ethylene glycol)/poly(lactic acid-co-glycolic acid) (PEG/PLGA). Chitosan, which have been widely used in tissue engineering due to its biocompatibility and osteoconductivity, can be used as thermosensitive hydrogels. However, despite the many advantages, chitosan hydrogel has not yet been used as a bioink. The purpose of this study was to develop a bioink by chitosan hydrogel for 3D bioprinting and to evaluate the suitability and potential ability of the developed chitosan hydrogel as a bioink. To prepare the chitosan hydrogel solution, ${\beta}-glycerolphosphate$ solution was added to the chitosan solution at the final pH ranged from 6.9 to 7.1. Gelation time decreased exponentially with increasing temperature. Scanning electron microscopy (SEM) image showed that chitosan hydrogel had irregular porous structure. From the water soluble tetrazolium salt (WST) and live and dead assay data, it was proven that there was no significant cytotoxicity and that cells were well dispersed. The chitosan hydrogel was well printed under temperature-controlled condition, and cells were well laden inside gel. The cytotoxicity of laden cells was evaluated by live and dead assay. In conclusion, chitosan bioink can be a candidate for 3D bioprinting.

  • PDF

Quality Characteristics of Kochujang Prepared with Maesil (Prunus mume) Extract during Aging (매실추출액 첨가 고추장의 숙성 중 품질특성 연구)

  • Lee, Min-Ji;Lee, Jun-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.5
    • /
    • pp.622-628
    • /
    • 2006
  • Kochujang was prepared with various concentrations of Maesil extracts (0, 1, 2, and 5%) and the physicochemical characteristics of Maesil extracts added Kochujang ('Maesil Kochujang') were investigated during aging of 100 days. pH decreased slightly during aging. Titratable acidity, on the other hand, increased with aging, reaching at the highest level at the 40 days of aging and then decreased slowly. The changes of moisture content were complicated in the beginning, but after 60 days it increased slowly. The water activity decreased but salt concentration increased consistently in all samples during aging. L* and a*-values decreased during aging and L*, a*, and b*-values decreased significantly with high amount of Maesil extract in the sample. Soluble solid contents increased slowly while reducing sugar contents increased for up to 40 days and then decreased. Amino nitrogen contents increased steadily after 40 days of aging and they reached at $230.00{\sim}246.00mg%$ upon 100 days of aging.

Effects of microbial enzymes on starch and hemicellulose degradation in total mixed ration silages

  • Ning, Tingting;Wang, Huili;Zheng, Mingli;Niu, Dongze;Zuo, Sasa;Xu, Chuncheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.2
    • /
    • pp.171-180
    • /
    • 2017
  • Objective: This study investigated the association of enzyme-producing microbes and their enzymes with starch and hemicellulose degradation during fermentation of total mixed ration (TMR) silage. Methods: The TMRs were prepared with soybean curd residue, alfalfa hay (ATMR) or Leymus chinensis hay (LTMR), corn meal, soybean meal, vitamin-mineral supplements, and salt at a ratio of 25:40:30:4:0.5:0.5 on a dry matter basis. Laboratory-scale bag silos were randomly opened after 1, 3, 7, 14, 28, and 56 days of ensiling and subjected to analyses of fermentation quality, carbohydrates loss, microbial amylase and hemicellulase activities, succession of dominant amylolytic or hemicellulolytic microbes, and their microbial and enzymatic properties. Results: Both ATMR and LTMR silages were well preserved, with low pH and high lactic acid concentrations. In addition to the substantial loss of water soluble carbohydrates, loss of starch and hemicellulose was also observed in both TMR silages with prolonged ensiling. The microbial amylase activity remained detectable throughout the ensiling in both TMR silages, whereas the microbial hemicellulase activity progressively decreased until it was inactive at day 14 post-ensiling in both TMR silages. During the early stage of fermentation, the main amylase-producing microbes were Bacillus amyloliquefaciens (B. amyloliquefaciens), B. cereus, B. licheniformis, and B. subtilis in ATMR silage and B. flexus, B. licheniformis, and Paenibacillus xylanexedens (P. xylanexedens) in LTMR silage, whereas Enterococcus faecium was closely associated with starch hydrolysis at the later stage of fermentation in both TMR silages. B. amyloliquefaciens, B. licheniformis, and B. subtilis and B. licheniformis, B. pumilus, and P. xylanexedens were the main source of microbial hemicellulase during the early stage of fermentation in ATMR and LTMR silages, respectively. Conclusion: The microbial amylase contributes to starch hydrolysis during the ensiling process in both TMR silages, whereas the microbial hemicellulase participates in the hemicellulose degradation only at the early stage of ensiling.