• Title/Summary/Keyword: Water-seeding

Search Result 284, Processing Time 0.035 seconds

Analysis of Available Time of Cloud Seeding in South Korea Using Radar and Rain Gauge Data During 2017-2022 (2017-2022년 남한지역 레이더 및 지상 강수 자료를 이용한 인공강우 항공 실험 가능시간 분석)

  • Yonghun Ro;Ki-Ho Chang;Yun-kyu Lim;Woonseon Jung;Jinwon Kim;Yong Hee Lee
    • Journal of Environmental Science International
    • /
    • v.33 no.1
    • /
    • pp.43-57
    • /
    • 2024
  • The possible experimental time for cloud seeding was analyzed in South Korea. Rain gauge and radar precipitation data collected from September 2017 to August 2022 in from the three main target stations of cloud seeding experimentation (Daegwallyeong, Seoul, and Boryeong) were analyzed. In this study, the assumption that rainfall and cloud enhancement originating from the atmospheric updraft is a necessary condition for the cloud seeding experiment was applied. First, monthly and seasonal means of the precipitation duration and frequency were analyzed and cloud seeding experiments performed in the past were also reanalyzed. Results of analysis indicated that the experiments were possible during a monthly average of 7,025 minutes (117 times) in Daegwallyeong, 4,849 minutes (81 times) in Seoul, and 5,558 minutes (93 times) in Boryeong, if experimental limitations such as the insufficient availability of aircraft is not considered. The seasonal average results showed that the possible experimental time is the highest in summer at all three stations, which seems to be owing to the highest precipitable water in this period. Using the radar-converted precipitation data, the cloud seeding experiments were shown to be possible for 970-1,406 hours (11-16%) per year in these three regions in South Korea. This long possible experimental time suggests that longer duration, more than the previous period of 1 hour, cloud seeding experiments are available, and can contribute to achieving a large accumulated amount of enhanced rainfall.

Analysis of Cloud Seeding Case Experiment in Connection with Republic of Korea Air Force Transport and KMA/NIMS Atmospheric Research Aircrafts (공군수송기와 기상항공기를 연계한 인공강우 사례실험 분석)

  • Yun-Kyu Lim;Ki-Ho Chang;Yonghun Ro;Jung Mo Ku;Sanghee Chae;Hae-Jung Koo;Min-Hoo Kim;Dong-Oh Park;Woonseon Jung;Kwangjae Lee;Sun Hee Kim;Joo Wan Cha;Yong Hee Lee
    • Journal of Environmental Science International
    • /
    • v.32 no.12
    • /
    • pp.899-914
    • /
    • 2023
  • Various seeding materials for cloud seeding are being used, and sodium chloride powder is one of them, which is commonly used. This study analyzed the experimental results of multi-aircraft cloud seeding in connection with Republic of Korea Air Force (CN235) and KMA/NIMS(Korea Meteorological Administration/National Institute of Meteorological Sciences) Atmospheric Research Aircraft. Powdered sodium chloride was used in CN235 for the first time in South Korea. The analysis of the cloud particle size distributions and radar reflectivity before and after cloud seeding showed that the growth efficiency of powdery seeding material in the cloud is slightly higher than that of hygroscopic flare composition in the distribution of number concentrations by cloud aerosol particle diameter (10 ~ 1000 ㎛). Considering the radar reflectivity, precipitation, and numerical model simulation, the enhanced precipitation due to cloud seeding was calculated to be a maximum of 3.7 mm for 6 hours. The simulated seeding effect area was about 3,695 km2, which corresponds to 13,634,550 tons of water. In the precipitation component analysis, as a direct verification method, the ion equivalent concentrations (Na+, Cl-, Ca2+) of the seeding material at the Bukgangneung site were found to be about 1000 times higher than those of other non-affected areas between about 1 and 2 hours after seeding. This study suggests the possibility of continuous multi-aircraft cloud seeding experiments to accumulate and increase the amount of precipitation enhancement.

A Case Study on the Impact of Ground-based Glaciogenic Seeding on Winter Orographic Clouds at Daegwallyeong (겨울철 대관령지역 지형성 구름에 대한 지상기반 구름씨뿌리기 영향 사례연구)

  • Yang, Ha-Young;Chae, Sanghee;Jeong, Jin-Yim;Seo, Seong-Kyu;Park, Young-San;Kim, Baek-Jo
    • Journal of the Korean earth science society
    • /
    • v.36 no.4
    • /
    • pp.301-314
    • /
    • 2015
  • The purpose of this study was to investigate the impact of ground-based glaciogenic seeding on orographic clouds in the Daegwallyeong area on 13 March, 2013. The experiments was conducted by releasing silver iodide (AgI) under following conditions: surface temperature below $-4^{\circ}C$, wind direction between 45 and $130^{\circ}$, and wind speed less than $5ms^{-1}$. Two seeding rates, $38gh^{-1}$ (SR1) and $113gh^{-1}$ (SR2), were tested to obtain an appropriate AgI ratio for snowfall enhancement in the Daegwallyeong area. Numerical simulations were carried out by using the WRF (Weather Research and Forecast) model with AgI point-source module which predicted dispersion fields of AgI particles. The results indicated that the target orographic clouds contained adequate amount of supercooled liquid water and that the dispersion of AgI particles tended to move along the prevailing wind direction. To validate the seeding effects, the observation data from FM-120 and MPS as well as PARSIVEL disdrometer were analyzed. In this case study, glaciogenic seeding significantly increased the concentration of small ice particles below 1 mm in diameter. The observation results suggest that SR1 seeding be reasonable to use the ground-based seeding in the Daegwallyeong area.

Measurement of the Flow Field in a River (LSPIV에 의한 하천 표면유속장의 관측)

  • Kim, Young-Sung;Yang, Jae-Rheen
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1812-1816
    • /
    • 2009
  • 이미지 해석에 의한 유속장 측정방법은 유체역학분야에서 지난 30 여년 동안 많이 활용되어온 속도측정 기법으로 오늘날에는 이를 수공학 분야에서 이를 유량측정 등 수리현상 해석에 활용하려는 시도가 다각적으로 이루어지고 있다. 이에 본 연구에서는 이미지 해석에 의한 유속장 측정방법을 용담댐 시험유역에 적용하여 그의 자연하천에서의 적용성을 검토하고자 한다. 이미지 해석에 의한 유속장 측정방법은 PIV(Particle Image Velocimetry)로 통칭되고 있으며, PIV는 seeding, illumination, recording, 및 image processing의 네 가지 요소로 구성된다. seeding을 위해서 유체를 따라 흐를수 있는 작은 입자를 유체에 첨가한다. 유체를 따라 흐르는 입자들의 선명한 이미지를 얻기 위해서illumination이 필요하다. PIV를 이용하여 흐름을 해석하기 위한 illumination은 일반적으로 이중펄스 레이저가 이용된다. 이렇게 유속장 해석을 하려는 유체에 대하여 seeding 및 illumination이 준비되면 단일노출- 다중 프레임법, 혹은 다중노출-단일 프레임법으로 흐름을 recording을 한다. image processing은 이미지를 다운로드하고, 디지타이징 및 화질향상을 하는 전처리(pre-processing), 상관계수의 산정에 의한 유속 벡터의 결정 및 에러 벡터를 제거하고 유속장을 그래프화하는 후처리(post-processing) 과정으로 구성된다. LSPIV(Large Scale PIV)는 PIV의 기본원리를 근거로 하여 기존의 PIV에 비하여 실험실 내에서의 수리모형실험이나 일반 하천에서의 유속측정과 같은 큰 규모$(4m^2\sim45,000m^2$)의 흐름해석을 할 수 있도록 Fujita et al.(1994)와 Aya et al.(1995)이 확장시킨 것이다. PIV와 비교시 LSPIV의 다른 점은 넓은 흐름 표면적을 포함하기 위하여 촬영시에 카메라의 광축과 흐름 사이의 각도가 PIV에서 이용하는 수직이 아닌 경사각을 이용하였고 이에 따라 발생하는 이미지의 왜곡을 제거하기 위하여 이미지 변환기법을 적용하여 왜곡이 없는 정사촬영 이미지로 변환시킨다. 이후부터는 PIV의 이미지 처리 방법이 적용되어 표면유속을 산정한다. 다만 이미지 변환을 PIV 이미지 처리 전에 하느냐 후에 하느냐에 따라 유속장 해석결과에 차이가 있다. PIV의 네가지 단계를 포함하여 LSPIV의 각 단계를 구분하면, seeding, illumination, recording, image transformation,image processing 및 post-processing의 여섯 단계로 나뉘어진다 (Li, 2002). LSPIV를 적용시 물표면 입자의 Tracing을 위하여 자연하천에서 사용하기에 적합한 환경친화적인 seeding 재료인 Wood Mulch를 사용하여 유속을 측정하였다. 적용지점은 용담댐 상류의 동향수위관측소 지점으로 이 지점은 한국수자원공사의 수자원시험유역이 위치하고 있다. 이미지의 촬영은 가정용 비디오 캠코더 (Sony DCR-PC 350)을 이용하여 두 줄기의 흐름에 대하여 각각 약 5분 동안의 영상을 촬영한후 이중에서 seeding의 분포가 잘 이루어진 약 1분간을 추출한후 이를 이용하여 PIV 분석에 이용하였다. 대체적으로 유속장의 계산이 무난하게 이루어지었으나 비교적 수질 상태가 양호하고, 수심이 낮고, 하상재료가 자갈로 이루어져 있어 비슷한 색상의 seeding 재료를 추적하기 어려운 구간이 발생한 부분에서는 유속의 계산이 정확히 이루어지지 않았다.

  • PDF

Optimum N Fertilization at Panicle Initiation Stage on Ridge Direct Seeding on Dry Paddy of Rice as an Irrigation Water-Saving Cultural System (벼 휴립건답직파 절수재배에 알맞은 질소 수비량)

  • 최원영;박홍규;이기상;김상수;이재길;김순철;최선영
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.4
    • /
    • pp.177-184
    • /
    • 2001
  • This study was conducted to identify the optimum nitrogen (N) fertilization at panicle initiation stage on ridge direct seeding on dry paddy of rice. During 1999~2000, a series of experiments was carried out at field (Chonbuk series) of the National Honam Agricultural Experiment Station, RDA using Dongjinbyeo. Plants were taller, and leaf area index and top dry weight increased with more N fertilization at panicle initiation stage. Photosynthetic rate of heading stage was higher at higher amounts of N fertilization at panicle initiation stage, especially in 6 kg/10a compared with 10 kg/10a seeding rate. Lodging index and its related traits did not significantly differ under different rates of N fertilization at panicle initiation stage. N uptake of the rice plant increased as more N fertilization at panicle initiation stage. N use efficiency was highest under the standard topdressing rate at 6 kg/10a seeding rate. Panicle number per m$^2$ increased with more topdressed N, but ripened grain rate and 1,000-grain weight of brown rice did not differ with an increase in topdressed N. Milled rice yield was 6% higher in the 6 kg/10a seeding rate and 13% higher in the 10 kg/10a seeding rate at 50% more topdressed N compared with 4.8 kg/10a N fertilization at panicle initiation stage of 6 kg/10a seeding rate.

  • PDF

Effects of cultivation methods on methane emission in rice paddy

  • Kim, Sukjin;Choi, Jong-Seo;Kang, Shin-gu;Park, Jeong-wha;Yang, Woonho
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.319-319
    • /
    • 2017
  • Methane is the main greenhouse gas released from rice paddy field. Methane from paddy fields accounts for 11 % of the global total methane emission. The global warming potential (GWP) of methane is 25 times more than that of carbon dioxide on a mass basis. It is well known that most effective practice to mitigate methane in paddy is related to the water management during rice growing season and the use of organic matters. This study was conducted to investigate the effects of tillage and cultivation method on methane emission in paddy. Tillage (tillage and no-tillage) and cultivation methods (transplanting and direct seeding) were combined tillage-transplanting (T-T), tillage-wet hill seeding (T-W), tillage-dry seeding (T-D) and no-till dry seeding (NT-D) to evaluate methane mitigation efficiency. Daily methane emission was decreased on seeding treatments (T-W, T-D, NT-D) than transplanting treatment (T-T). Amount of methane emission during rice growing season is highest in T-T ($411.7CH_4\;kg\;ha^{-1}y^{-1}$) and lowest in NT-D treatment (89.7). In T-W and T-D treatments, methane emissions were significantly decreased by 36 and 51 % respectively compared with T-T. Methane emissions were highly correlated with the dry weight of whole rice plant ($R^2=0.62{\sim}0.93$). T-T treatment showed highest $R^2$ (0.93) among the four treatments. Rice grain yields did not significantly differ with the tillage and cultivation methods used. These results suggest that direct seeding practice in rice production could mitigate the methane emissions without loss in grain yield.

  • PDF

Effects of Different Tillage Practices on Changes of Soil Physical Properties and Growth of Direct Seeding Rice (경운방법의(耕耘方法) 차이(差異)가 토양물리성(土壤物理性)과 직파(直播)벼생육(生育)에 미치는 영향(影響))

  • Cho, Hyun-Jun;Jo, In-Sang;Hyun, Byung-Keun;Shin, Jae-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.4
    • /
    • pp.301-305
    • /
    • 1995
  • This study was conducted to find out the changes of soil physical properties and rice growth by the different soil prepartion, such as direct seeding in dry or submerged condition, tillage or no-tillage, and transplanting the infant seedlings. Soil bulk density and hardness were higher in no-tillage plots than tillage plots, and in dry-seeding plots than submerged seeding plots. Permeability of no-tillage plot was increased 56% and water requirement was also increased 27% compare to the conventional transplanting condition. In no-tillage plot, the soil water contents were so rapidly decreased that easily changed to optimum condition for machinery working. The root growth of rice was inhibited as increasing the soil bulk density at early stage, bottom of culm in no-tillage submerged plot was located 0.9cm above the soil surface and the rice plant slightly lodged. The root distribution of surface layer was higher in no-tillage plot and the heading date was 2 days earlier in no-tillage plots than tillage plots, and 3 days earlier in dry seeding plot than submerged seeding plot. Rice yields of no-tillage plots were 5.55 M/T/ha and 5.16 M/T/ha for dry and submerged seeding respectively. These yields were lower about 12.1 % in dry seeding and 18.3% in submerged seeding compare with 6.31M/T/ha of transplanting plot. Rice yields were higher at dry seeding than submerged seeding in no-tillage condition, but in tillage condition, the rice yields were better at submerged seeding plot than dry one.

  • PDF

Effect of Methiocarb Singles and Mixtures on Bird-repelling and Seedling Growth in Water-seeding Rice (담수 직파 벼에 있어서 Methiocarb 단제 및 Thiram 혼합제가 새 피해 경감과 모의 생육에 미치는 영향)

  • 이철원;송범헌;정봉진
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.4
    • /
    • pp.378-383
    • /
    • 1997
  • Bird damages are often occurred at the seeding and seedling stages of crops. What the bird damage is preventing from the seeding and seedling of rice in the paddy would be very important to get high yield. Methiocarb was formulated as a bird repellent of crop seeding and seedling. Its effects on the seedling growth, related to the chemical injuries and the bird damages, were examined at the seeding and seedling growth stages of Anjungbyeo(Oryza sativa L.) with different types and amounts of methiocarb treatment in both pot and field experiments. In the pot experiment, bird damages were not occurred at all treatments of methiocarb, while bird damages were occurred at the control; 30, 85, and 100% of damages at 5, 10, and 15 days after seeding, respectively. The ratio of seedling stand was not significantly different among all of treatments, methiocarb, methiocarb+thiram, and control. However, the plant height and the number of seedling leaves at 15 days after seeding was shortened and lowered statistically more at treatment of methiocarb 15g than those of methiocarb 10g and control. The plant height at 35 days after seeding, showing the recovery degrees of chemical injuries, was significantly lowered in treatment of methiocarb+thiram 15g, whereas the plant height of methiocarb FS 15g was not significantly differed from that of the control. In the field study, the bird damages were significantly reduced in treatment of methiocarb compared to that of the control. The plant height and the number of leaves at 25 days after seeding were not differed statistically among all of treatments. The chemical injuries were occurred in all treatments of methiocarb at 10 days after seeding, while they were not shown at 20 days after seeding.

  • PDF