• Title/Summary/Keyword: Water-rock interaction

Search Result 127, Processing Time 0.021 seconds

Environmental Characteristics of Groundwater for Sedimetary Rocks in Daegu City (대구시 퇴적암 분포 지역의 지하수에 대한 환경지화학적 특성)

  • 이인호;조병욱;이병대
    • The Journal of Engineering Geology
    • /
    • v.13 no.1
    • /
    • pp.1-16
    • /
    • 2003
  • Geochemical characteristics of groundwater in the different kinds of various lithology such as Haman formation, Panyaweol formation, Jusan andesitic formation and Palgongsan granite is distinguished by mineralogical and chemical compositions. The Concentration of the majority of solutes in groundwaters of Haman and Panyaweol formation is higher than in that of andesite and granite. Higher concentration of $HCO_3^{-}{\;}and{\;}SO_4^{2-}$ anions in the groundwater is peculiar. High concentrations of $Ca^{2+},{\;}Mg^{2+},{\;}HCO_3^{-}$ in the groundwaters of the sedimentary rocks result mainly from reaction of $CO^{2-}$ charged water with calcite and weathered feldspars. With the Piper diagram, the groundwaters of Haman formations are mainly plotted in $CaSO_4-CaCl_2$ type, whereas those of Panyaweol formations are plotted in the bothside of $Ca(HCO_3)_2{\;}and{\;}CaSO_4-CaCl_2$ type. Thses two different types of $Ca(HCO_3)_2{\;}and{\;}CaSO_4-CaCl_2$ groundwater were originated from dissolution of calcite($Ca(HCO_3)_2)$ and the oxidation of pyrite($CaSO_4-CaCl_2$), respectively. And it also is influenced by anthropogenic contamination. Three factors were extracted from the factor analysis for chemical data. Factor 1, controlled by $SO_4^{2-},{\;}Na^{+},{\;}Ca^{2+}$ and Fe, explains the dissolution of calcite, plagioclase and oxidation of pyrite. Factor 2, controlled by $HCO_3^{-}{\;}and{\;}Mg^{2+}$, mainly explains the dissolution of Mg-carbonates and dolomitization. Factor 3, controlled by $Cl^{-},{\;}K^{+}{\;}and{\;}NO_3^{-}$, is subject to the influence of artificial pollution including industrial waste water disposal. In this study area, some industrial complex which is close to Keumho river show the higher score of factor 3.

Hydrogeochemical characteristics of urban groundwater in Seoul

  • Lee, Ju-Hee;Yun, Seong-Taek;Kwon, Jang-Soon;Kim, Dong-Seung;Park, Seong-Sook
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.472-472
    • /
    • 2004
  • Numerous studies on urban groundwater have been carried out in many other countries. Urban groundwater shows a unique hydrologic system because of complex urban characteristics such as road pavement, sewers and public water supply systems. These urban facilities may change the characteristics of groundwater recharge but contaminate its quality as well. There have been several researches on urban groundwater in Seoul. Seoul has been industrialized very rapidly so that the city has large population. The recent population in Seoul amounts to more than ten millions, corresponding to a very high density of about 17, 000 people/km$^2$. Therefore, many factors affect the groundwater quality and quantity in Seoul. Nowadays, groundwater in Seoul is being extracted for construction, industrial use, and drinking and so on. There are 15, 714 wells in Seoul and its annual usage is 41, 425, 977m$^3$(in 2001). Therefore, systematic studies are needed to properly manage and use the groundwater in Seoul. The purposes of this study in progress are to identify geochemical characteristics of groundwater in Seoul and to determine the extent of groundwater contamination and its relationship with urban characteristics. For this study, groundwater was sampled from more than 400 preexisting wells that were randomly selected throughout the Seoul area. For all samples, major cations together with Si, Al, Fe, Pb, Hg For 200 samples among them, TCE, PCE, BTEX were also analyzed by GC. Our study shows that groundwater types of Seoul are distributed broadly from Ca-HCO$_3$ type to Ca-Cl+NO$_3$ type. The latter type indicates anthropogenic contamination. Among cations, Ca is generally high in most samples. In some samples, Na and K are dominant. The dominant anions change widely from HCO$_3$ to Cl+NO$_3$. The anion composition is considered to effectively indicate the contribution of distinct anthropogenic sources. In addition, major ions are positively proportional to total dissolved solid (TDS) except K and NO$_3$. Thus, we consider that TDS may be used as an effective indicator of the extent of pollution. However, the increase of TDS may result from increased water-rock interaction. To determine the extent of groundwater contamination, it is needed to figure out the baseline water quality in Seoul. Furthermore, detailed geochemical studies are required to find out pollution sources and their corresponding hydrochemical parameters.

  • PDF

Stable Isotope and Fluid Inclusion Studies of Gold-Silver-Bearing Hyarothermal-Vein Deposits, Cheonan-Cheongyang-Nonsan Mining District, Republic of Korea: Cheongyang Area (한반도 천안-청양-논산지역 광화대내 금-은 열수광상의 안정동위원소 및 유체포유물 연구 : 청양지역)

  • So, Chil-Sup;Shelton, K.L.;Chi, Se-Jung;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.21 no.2
    • /
    • pp.149-164
    • /
    • 1988
  • Electrum-sulfide mineralization of the Samgwang and Sobo mines of the Cheongyang Au-Ag area was deposited in two stages of quartz and calcite veins that fill fault zones in granite gneiss. Radiometric dating indicates that mineralization is Early Cretaceous age (127 Ma). Fluid inclusion and sulfur isotope data show that ore mineralization was deposited at temperatures between $340^{\circ}$ and $180^{\circ}C$ from fluids with salinities of 1 to 8 wt. % equiv. NaCl and a ${\delta}^{34}S_{{\sum}S}$ value of 2 to 5 per mil. Evidence of fluid boiling (and $CO_2$ effervescence) indicates a range of pressures from < 200 to $\approx$ 700 bars, corresponding to depths of ${\approx}1.5{\pm}0.3\;km$ in a hydrothermal system which alternated from lithostatic toward hydrostatic conditions. Au-Ag deposition was likely a result of boiling coupled with cooling. Meaured and calculated hydrogen and oxygen isotope values of ore-forming fluids indicate a significant meteoric water component, approaching unexchanged paleometeoric water values. Comparison of these values with those of other Korean Au-Ag deposits reveals a relationship among depth, Au/Ag ratio and degree of water-rock interaction. All investigated Korean Jurassic and Cretaceous gold-silver-bearing deposits have fluids which are dominantly evolved meteoric waters, but only deeper systems (${\geq}1.5\;km$) are exclusively gold-rich.

  • PDF

Volcanic Processes of Dangsanbong Volcano, Cheju Island (제주도 당산봉 화산의 화산과정)

  • 황상구
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.1-14
    • /
    • 1998
  • Dangsanbong volcano, which is located on the coast of the western promontory of Cheju Island, occurs in such a regular pattern on the sequences which represent an excellent example of an eruptive cycle. The volcano comprises a horseshoe-shaped tuff cone and a younger nested cinder cone on the crater floor, which are overlain by a lava cap at the top of the cinder cone, and wide lava plateau in the moat between two cones and in the northern part. The volcanic sequences suggest volcanic processes that start with Surtseyan eruption, progress through Strombolian eruption and end with Hawaiian eruption, and then are followed by rock fall from sea cliff of the tuff cone and by air fall from another crater. It is thought that the eruptive environments of the tuff cone could be mainly emergent because the present cone is located on the coast, and standing body of sea water could play a great role. It is thought that the now emergent part of the tuff cone was costructed subaerially because there is no evidence of marine reworking. The emergent tuff cone is characterized by distinctive steam-explosivity that results primarily from a bulk interaction between rapidly ascending magma and external water. The sea water gets into the vent by flooding accross or through the top or breach of northern tephra cone. Dangsanbong tuff cone was constructed from Surtseyan eruption which went into with tephra finger jetting explosion in the early stage, late interspersed with continuous upruch activities, and from ultra-Surtseyan jetting explosions producting base surges in the last. When the enclosure of the vent by a long-lived tephra barrier would prevent the flooding and thus allow the vent to dry out, the phreatomagmatic activities ceased to transmit into magmatic activity of Strombolian eruption, which constructed a cinder cone on the crater floor of the tuff cone Strombolian eruption ceased when magma in the conduit gradually became depleted in gas. In the Dangsanbong volcano, the last magmatic activity was Hawaiian eruption which went into with foundation and effusion of basalt lava.

  • PDF

Geochemical Equilibria and Kinetics of the Formation of Brown-Colored Suspended/Precipitated Matter in Groundwater: Suggestion to Proper Pumping and Turbidity Treatment Methods (지하수내 갈색 부유/침전 물질의 생성 반응에 관한 평형 및 반응속도론적 연구: 적정 양수 기법 및 탁도 제거 방안에 대한 제안)

  • 채기탁;윤성택;염승준;김남진;민중혁
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.103-115
    • /
    • 2000
  • The formation of brown-colored precipitates is one of the serious problems frequently encountered in the development and supply of groundwater in Korea, because by it the water exceeds the drinking water standard in terms of color. taste. turbidity and dissolved iron concentration and of often results in scaling problem within the water supplying system. In groundwaters from the Pajoo area, brown precipitates are typically formed in a few hours after pumping-out. In this paper we examine the process of the brown precipitates' formation using the equilibrium thermodynamic and kinetic approaches, in order to understand the origin and geochemical pathway of the generation of turbidity in groundwater. The results of this study are used to suggest not only the proper pumping technique to minimize the formation of precipitates but also the optimal design of water treatment methods to improve the water quality. The bed-rock groundwater in the Pajoo area belongs to the Ca-$HCO_3$type that was evolved through water/rock (gneiss) interaction. Based on SEM-EDS and XRD analyses, the precipitates are identified as an amorphous, Fe-bearing oxides or hydroxides. By the use of multi-step filtration with pore sizes of 6, 4, 1, 0.45 and 0.2 $\mu\textrm{m}$, the precipitates mostly fall in the colloidal size (1 to 0.45 $\mu\textrm{m}$) but are concentrated (about 81%) in the range of 1 to 6 $\mu\textrm{m}$in teams of mass (weight) distribution. Large amounts of dissolved iron were possibly originated from dissolution of clinochlore in cataclasite which contains high amounts of Fe (up to 3 wt.%). The calculation of saturation index (using a computer code PHREEQC), as well as the examination of pH-Eh stability relations, also indicate that the final precipitates are Fe-oxy-hydroxide that is formed by the change of water chemistry (mainly, oxidation) due to the exposure to oxygen during the pumping-out of Fe(II)-bearing, reduced groundwater. After pumping-out, the groundwater shows the progressive decreases of pH, DO and alkalinity with elapsed time. However, turbidity increases and then decreases with time. The decrease of dissolved Fe concentration as a function of elapsed time after pumping-out is expressed as a regression equation Fe(II)=10.l exp(-0.0009t). The oxidation reaction due to the influx of free oxygen during the pumping and storage of groundwater results in the formation of brown precipitates, which is dependent on time, $Po_2$and pH. In order to obtain drinkable water quality, therefore, the precipitates should be removed by filtering after the stepwise storage and aeration in tanks with sufficient volume for sufficient time. Particle size distribution data also suggest that step-wise filtration would be cost-effective. To minimize the scaling within wells, the continued (if possible) pumping within the optimum pumping rate is recommended because this technique will be most effective for minimizing the mixing between deep Fe(II)-rich water and shallow $O_2$-rich water. The simultaneous pumping of shallow $O_2$-rich water in different wells is also recommended.

  • PDF

Assessment of Hydrochemistry and Irrigation Water Quality of Wicheon Watershed in the Gyeongsangbuk-do (경상북도 위천수계의 수리화학적 특성 및 관개용수 수질평가)

  • Lee, Gi-Chang;Park, Moung-Sub;Kim, Jae-Sik;Jang, Tae-Kwon;Kim, Hyo-Sun;Lee, Hwa-Sung;Son, Jin-Chang
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.1
    • /
    • pp.36-43
    • /
    • 2020
  • BACKGROUND: Wicheon watershed has the largest irrigation area among the mid-watershed of Nakdong river. However, no investigation of irrigation water quality has been conducted on the Wicheon watershed, which evaluates the effects on the soil quality and crop cultivation. Therefore, this study aims to provide various assessments of water quality of Wicheon watershed as the scientific basic data for efficient agricultural activities. METHODS AND RESULTS: Water sampling was performed in five locations of the first tributaries of Wicheon. Wicheon watershed showed clean water quality with very low organic matters and safe water quality from metals at all points of investigation. It was estimated that the natural chemical components of Wicheon watershed were originated from water-rock interaction in Gibbs diagram. All samples were concentrated in the type of Ca-HCO3-Cl in the Piper diagram. The quality of irrigation water was evaluated with sodium adsorption ratio (SAR), residual sodium carbonate (RSC), permeability index (PI), and percent sodium (%Na). The values of these water quality indices were in the range of 0.37-0.67, -2.11--0.24, 41.13-84.52% and 11.28-21.84%, respectively, and were classified as good grades at all sites. CONCLUSION: The water quality of Wicheon watershed was very low in salt, indicating good irrigation water suitable for growing agricultural products. We hope that the results of this study will be used as the basic data for the cultivation of agricultural products and promotion of their excellence.

Lithium Distribution in Thermal Groundwater: A Study on Li Geochemistry in South Korean Deep Groundwater Environment (온천수 내 리튬 분포: 국내 심부 지하수환경의 리튬 지화학 연구)

  • Hyunsoo Seo;Jeong-Hwan Lee;SunJu Park;Junseop Oh;Jaehoon Choi;Jong-Tae Lee;Seong-Taek Yun
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.729-744
    • /
    • 2023
  • The value of lithium has significantly increased due to the rising demand for electric cars and batteries. Lithium is primarily found in pegmatites, hydrothermally altered tuffaceous clays, and continental brines. Globally, groundwater-fed salt lakes and oil field brines are attracting attention as major sources of lithium in continental brines, accounting for about 70% of global lithium production. Recently, deep groundwater, especially geothermal water, is also studied for a potential source of lithium. Lithium concentrations in deep groundwater can increase through substantial water-rock reaction and mixing with brines. For the exploration of lithim in deep groundwater, it is important to understand its origin and behavior. Therefore, based on a nationwide preliminary study on the hydrogeochemical characteristics and evolution of thermal groundwater in South Korea, this study aims to investigate the distribution of lithium in the deep groundwater environment and understand the geochemical factors that affect its concentration. A total of 555 thermal groundwater samples were classified into five hydrochemical types showing distinct hydrogeochemical evolution. To investigate the enrichment mechanism, samples (n = 56) with lithium concentrations exceeding the 90th percentile (0.94 mg/L) were studied in detail. Lithium concentrations varied depending upon the type, with Na(Ca)-Cl type being the highest, followed by Ca(Na)-SO4 type and low-pH Ca(Na)-HCO3 type. In the Ca(Na)-Cl type, lithium enrichment is due to reverse cation exchange due to seawater intrusion. The enrichment of dissolved lithium in the Ca(Na)-SO4 type groundwater occurring in Cretaceous volcanic sedimentary basins is related to the occurrence of hydrothermally altered clay minerals and volcanic activities, while enriched lithium in the low-pH Ca(Na)-HCO3 type groundwater is due to enhanced weathering of basement rocks by ascending deep CO2. This reconnaissance geochemical study provides valuable insights into hydrogeochemical evolution and economic lithium exploration in deep geologic environments.

Hydrochemical Characteristics of Natural Mineral Water in the Daebo and Bulguksa Granites (대보화강암과 불국사화강암지역 먹는샘물의 수리화학적 특성)

  • 조병욱;성익환;추창오;이병대;김통권
    • The Journal of Engineering Geology
    • /
    • v.8 no.3
    • /
    • pp.247-259
    • /
    • 1998
  • Groundwater quality of the natural mineral water was investigated in hydrochemical aspects in order to ensure that mineral water meets stringent health standards. There exist 20 mineral water plants in the Daebo granite and 4 mineral water plants in the Bulguksa granite, respectively. Both granite areas show some differences in water chemistry. The pH, EC, hardness, total ionic contents in groundwater of the Daebo granite area are higher relative to those of the Bulguksa granite area. The content of major cations is in the order of Ca>Na>Mg>K, while that of major anions shows the order of $HCO_3>SO_4$>Cl>F. The fact that the $Ca-Na-HCO_3$ type is most predominant among water types may reflect that the dissolution of plagioclase that is most abundant in granitic rocks plays a most important role in groundwater chemistry. Representative correlation coefficients between chemical species are variable depending on geology. In the Daebo granite area, $Ca-HCO_3(0.84),{\;}Mg-HCO_3(0.81),{\;}SiO_2-Cl(0.74),{\;}Na-HCO_3(0.70)$ show relatively good correlationships. In the Bulguksa granite area, fairly good correlationships are found among some components such as K-Mg(0.93), $K-HCO_3(0.92)$, Mg-Cl(0.92), $Cl-HCO_3(0.91)$, and K-F(0.90). According to saturation index, most chemical species are undersaturated with respect to major minerals, except for some silica phases. Groundwater is slightly undersaturated with respect to calcite, whereas it is still greatly undersaturated with respect to dolomite, gypsum and fluorite. Based on the phase equilibrium it is clear that groundwater is mostly in equilibrium with kaolinite and becomes undersaturated with respect to feldspars, evolved from the stability area of gibbsite during water-rock interaction. While the activity of silica increases, there is no remarkable increase in the acivities of alkali ions and pH, which indicates that some amounts of silicic acid dissolved from silica phases as well as feldspars were provided to groundwater. It is concluded that chemical evolution of groundwater in granite aquifers may continue to proceed with increasing pH.

  • PDF

Geochemical Characteristics of Deep Granitic Groundwater in Korea (국내 화강암질암내 심부지하수의 지구화학적 특성)

  • 이종운;전효택;전용원
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.4
    • /
    • pp.199-211
    • /
    • 1997
  • As a part of study on geological disposal of radioactive waste, hydrogeochemical characteristics of deep granitic groundwater in Korea were investigated through the construction of a large geochemical dataset of natural water, the examination on the behaviour of dissolved constituents, and the consideration of phase stability based on thermodynamic approach. In granitic region, the contents of total dissolved solids increase progressively from surface waters to deep groundwaters, which indicates the presence of more concentrated waters at depth due to water-rock interaction. The chemical composition of groundwater evolves from initial $Ca^{2+}$-(C $l^{-}$+S $O_4$$^{2-}$) or $Ca^{2+}$-HC $O_3$$^{-}$ type to final N $a^{+}$-HC $O_3$$^{-}$ or N $a^{+}$-(C $l^{-}$+S $O_4$$^{2-}$) type, via $Ca^{2+}$-HC $O_3$$^{-}$ type. Three main mechanisms seem to control the chemical composition of groundwater in the granitic region; 1) congruent dissolution of calcite at shallower depth, 2) calcite precipitation and incongruent dissolution of plagioclase at deeper depth, and 3) kaolinite-smectite or/and kaolinite-illite reaction at equilibrium at deeper depth. The behaviour of dissolved major cations (C $a^{2+}$, $K^{+}$, $Mg^{2+}$, M $a^{+}$) and silica is likely to be controlled by these reactions.

  • PDF

Fluid Injection Simulation Considering Distinct Element Behavior and Fluid Flow into the Ground (지반내 입자거동 및 흐름을 고려한 수압작용 모델링)

  • Jeon, Je-Sung;Kim, Ki-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.2
    • /
    • pp.67-75
    • /
    • 2008
  • It is interesting to note that distinct element method has been used extensively to model the response of micro and discontinuous behavior in geomechanics. Impressive advances related to response of distinct particles have been conducted and there were difficulties in considering fluid effect simultaneously. Current distinct element methods are progressively developed to solve particle-fluid coupling focused on fluid flow through soil, rock or porous medium. In this research, numerical simulations of fluid injection into particulate materials were conducted to observe cavity initiation and propagation using distinct element method. After generation of initial particles and wall elements, confining stress was applied by servo-control method. The fluid scheme solves the continuity and Navior-Stokes equations numerically, then derives pressure and velocity vectors for fixed grid by considering the existence of particles within the fluid cell. Fluid was injected as 7-step into the assembly in the x-direction from the inlet located at the center of the left boundary under confining stress condition, $0.1MP{\alpha}\;and\;0.5MP{\alpha}$, respectively. For each simulation, movement of particles, flow rate, fluid velocity, pressure history, wall stress including cavity initiation and propagation by interaction of flulid-paricles were analyzed.