• Title/Summary/Keyword: Water-level rising during flood

Search Result 8, Processing Time 0.02 seconds

A Study on Water-level Rise Behavior Curve using Historical Record (기왕자료를 이용한 수위상승거동곡선에 관한 연구)

  • Kwak, Jaewon;Kim, Gilho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.601-610
    • /
    • 2023
  • The comprehension of water-level behavior in rivers is essential for effective flood and river environmental management. The objective of this study is to propose a methodology that can be used by field engineers engaged in actual practice, to readily identify the characteristics of water-level behavior during flood events. To this end, a total of 45 historical water-level records from 2010 to 2022 year, which provide flood information for the flood vulnerable districts of the Han River, were obtained. A Water-level Rise Behavior Curve (WRBC) was developed and suggested to quantify the amount of water-level rise per unit time during flood. As a result, the water-level rises by more than 80% of the total rise within the first 6.2 hours, followed by a gradual rise. The time required to achieve a particular equilibrium varied depending on the area and runoff characteristics of the upstream. Furthermore, the study revealed that the WRBC provides a statistical representation of the water-level rise trend during floods, and can be effectively utilized for flood mitigation measures in waterfront spaces and irrigation facilities.

A Study on Water Level Rising Travel Time due to Discharge of Paldang Dam and Tide of Yellow Sea in Downstream Part of Paldang Dam (팔당댐 방류량과 황해(서해) 조석영향에 따른 팔당댐 하류부 수위상승도달시간 예측)

  • Lee, Jong-Kyu;Lee, Jae-Hong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.2
    • /
    • pp.111-122
    • /
    • 2010
  • As the Jamsu-bridge and the floodplains of the Han River can be flooded during the rainy season, the exact prediction of the peak flood time is very important for mitigation of flood hazard. This study analyzes the effect of outflow of Paldang Dam and tide of Yellow Sea on the Han River. A target area is from the Paldang dam to Jeonryu gauging station. Water level of Jeonryu as a downstream boundary condition was estimated through multi linear regression analysis with outflow of Paldang dam and tide level of Incheon, because it was influenced by both a tide of Yellow Sea and outflow of Paldang dam. In this study, Water Level Rising Travel Time of the Jamsu-bridge and some floodplains in the Han River are estimated. Also, The second order polynomial expressions for relationships of outflow of Paldang Dam and Water Level Rising Travel Time were developed considering the outflow of Paldang dam and tide of Yellow Sea.

Evaluation of Agricultural Reservoirs Operation Guideline Using K-HAS and Ratio Correction Factor during Flood Season (수리·수문설계시스템 및 비율보정계수 기법을 활용한 농업용 저수지의 홍수기 운영기준 평가)

  • Jung, Hyoung-mo;Lee, Sang-Hyun;Kim, Kyounghwan;Kwak, Yeong-cheol;Choi, Eunhyuk;Yoon, Sungeun;Na, Ra;Joo, Donghyuk;Yoo, Seung-Hwan;Yoon, Gwang-sik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.4
    • /
    • pp.97-104
    • /
    • 2021
  • Despite the practical limitations of calculating the amount of inflow and supply related to the operation of agricultural reservoirs, the role of agricultural reservoirs is gradually being emphasized. In particular, as interest in disaster safety has increased, the demand for preliminary measures to prepare for disasters has been rising, for instance, pre-discharging agricultural reservoirs for flood control. The aim of this study is to analyze the plans for the flood season reservoir operation considering pre-discharge period and water level limit. Accordingly, we optimized the simulation of daily storage using the ratio correction factor (RCFs) and analyzed the amount of inflow and supply using K-HAS. In addition we developed the drought determination coefficient (k) as a indicator of water availability and applied it for supplementing the risk level criteria in the Drought Crisis Response Manual. The results showed that it would be difficult to set the water level limit during the flood period in the situation of little water supply for flood control in agricultural reservoirs. Therefore, it is necessary to operate the reservoir management regulations after measures such as securing additional storage water are established in the future.

Development of Reservoir Operation Model using Simulation Technique in Flood Season (I) (모의기법에 의한 홍수기 저수지 운영 모형 개발 (I))

  • Sin, Yong-No;Maeng, Seung-Jin;Go, Ik-Hwan;Lee, Hwan-Gi
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.6
    • /
    • pp.745-755
    • /
    • 2000
  • The dam operation system of KOWACO for flood control doesn't have capability to account for the downstream hydrologic conditions and any feasible index to decide the pre-release from the forecasted rainfall and inflow. In this study, a dam operation model for flood control was developed to account for the flood flow condition of its downstream to give users the dam release schedules. Application test of EV ROM to Keum River showed that EV ROM is superior to the Rigid ROM and Technical ROM which are currently used by KOWACO. EV ROM developed in this study provides a release schedule accounting for the cumulative lateral flow hydrograph at the downstream control points where the discharge does not depend only on the dam operation. but also on lateral inflow from the tributaries. In order to reduce the peak discharge at the control points, it suggests the preliminary release during the early rising phase of the predicted hydrograph, holding the flood flow inside the dam during a peak phase, and afterward resuming the release. Three case studies of flood control by the operation of Daechung Multipurpose Dam in Geum River Basin show that the EV ROM is superior to the Rigid ROM and Technical ROM. This must be due to its nature to account for the downstream flow condition as well as the inflow and water level of the dam. It was also conceived that further case studies of EV ROM and more accurate rainfall prediction would improve the dam operation for flood control.ontrol.

  • PDF

A Study on the ex-ante Hydraulic Facilities Assessment Techniques Combinedly Considering Flood Control - Environmental Functions (하천의 치수-환경기능 복합 고려 수리시설물 사전평가 방법에 관한 연구)

  • Lee, Tae-Geun;Sim, Gyoo-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.517-529
    • /
    • 2020
  • Various facilities in the river working in a complex interdependence network result in both desired and adverse effects. Among these, the weir crossing the river continuously acts in various ways, such as securing river maintenance flow and water level during dry-period, and rising flood level during rainy period. Until now, weir planning was only limited to flood mitigation management. Recently, the demand for securing river environment functions is increasing. Therefore, the necessity for an environmental flow has emerged. Nevertheless, there is no analysis and evaluation of the ecological functional aspects applying the environmental flow when planning facilities. Therefore, this study aimed to develop and systematize an assessment method that considers not only flood control but also river environment. Environmental flow was applied to the weir named Dondaet-bo and hydraulic analysis was conducted for each retention, demolition, and re-installation case. Also, this research was conducted to minimize the impact on the surrounding river facilities and flood assessments from previous perspectives were performed. The study result demonstrated a plan to reinstall the weir as a natural riffle. Through this study, it is expected that the flood control and environmental functions of rivers can be secured in combination.

Landslide Analysis of River Bank Affected by Water Level Fluctuation I (저수위 변동에 영향을 받는 강기슭의 산사태 해석 I)

  • Kim, You-Seong;Wang, Yu-Mei
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.3
    • /
    • pp.77-85
    • /
    • 2010
  • The change of water level in reservoirs is an important factor causing failure of bank slopes, i.e. landslide. The water level of Three Gorges reservoir in China fluctuate between 145 m and 175 m, as a matter of flood control. During its normal operational state, the rate of water level fluctuation is supposed to range from 0.67 m/d to 3.0 m/d. Majiagou slope is located on the left bank of Zhaxi River, 2.1 km up from the outlet. Zhaxi River is a tributary of the Yangtze River within the Three Gorges area, of which the water level changes with the reservoir. At the back of Majiagou slope, a 20 m long and 3~10 cm wide fissure developed just after the reservoir water level rose from 95 m to 135 m in 2003. This big fissure was a full suggestion of potential failure of this slope. In this study, unsaturated-saturated seepage analyses were carried out to simulate the change of pore-water pressures in the bank slope subjected to the reservoir water level change. The obtained pore-water pressures were then used to evaluate the change in factor of safety (FS) with reservoir water level. It was found that the phreatic line showed a delayed response with respect to the change of the reservoir water level, because the seepage through soil layer was generally slower than water flows itself. During the rising and drawdown process, the phreatic lines take the shapes of concave and convex, respectively. And the fluctuation of reservoir water level just affected the front part of the bank slope, but had little influence on the back of the slope.

  • PDF

Behavior of double deck tunnel due to feature change and variation of ground water table (다목적 복층터널의 기능전환과 지하수위 변화에 따른 거동분석)

  • Park, No-Hyeon;Kim, Ho-Jong;Shin, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.6
    • /
    • pp.581-591
    • /
    • 2016
  • Several attempts to construct multi-purpose tunnel for both road and waterway have been made. The multi-purpose tunnel is mainly used as a road tunnel, however it is transferred to waterway to control flood during rainy season. The planning of the multi-purpose tunnel is recognized as cost-effective way of infrastructure construction. In case of the multi-purpose tunnel constructed beneath groundwater table, seasonal fluctuation of groundwater table and repeated flow in the tunnel may cause long-term deterioration of the tunnel system. In this study, the behavior of multi-purpose tunnel in view of groundwater table or flow in the tunnel is investigated using model test and numerical modeling method. The results have shown that rising of groundwater table caused buoyant force to the tunnel and the fluctuation of rainwater in the tunnel generated loosening of surrounding ground. It is recommended to evaluate the effect of the long-term water pressure variation in the design of a multi-purpose tunnel.

Impact Assessment of Climate Change on Drought Risk (기후변화가 가뭄 위험성에 미치는 영향 평가)

  • Kim, Byung-Sik;Kwon, Hyun-Han;Kim, Hung-Soo
    • Journal of Wetlands Research
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2011
  • A chronic drought stress has been imposed during non-rainy season(from winter to spring) since 1990s. We faced the most significant water crisis in 2001, and the drought was characterized by sultry weather and severe drought on a national scale. It has been widely acknowledged that the drought related damage is 2-3 times serious than floods. In the list of the world's largest natural disaster compiled by NOAA, 4 of the top 5 disasters are droughts. And according to the analysis from the NDMC report, the drought has the highest annual average damage among all the disasters. There was a very serious impact on the economic such as rising consumer price during the 2001 spring drought in Korea. There has been flood prevention measures implemented at national-level but for mitigation of droughts, there are only plans aimed at emergency (short-term) restoration rather than the comprehensive preventive measures. In addition, there is a lack of a clear set of indicators to express drought situation objectively, and therefore it is important and urgent to begin a systematic study. In this study, a nonstationary downscaling model using RCM based climate change scenario was first applied to simulate precipitation, and the simulated precipitation data was used to derive Standardized Precipitation Index (SPI). The SPI under climate change was used to evaluate the spatio-temporal variability of drought through principal component analysis at three different time scales which are 2015, 2045 and 2075. It was found that spatio-temporal variability is likely to modulate with climate change.