• Title/Summary/Keyword: Water-hammering

Search Result 35, Processing Time 0.019 seconds

CPVC Valve Tightening Torque Impact Sockets on the Leaks (CPVC 밸브소켓 체결토크가 누수발생에 미치는 영향)

  • Lim, Chun-Ki;Baek, Eun-Sun
    • Fire Science and Engineering
    • /
    • v.30 no.4
    • /
    • pp.46-58
    • /
    • 2016
  • In this study, the stress applied to screw section, strain, displacement, von Mises stress, and the compression stress applied to the rubber packing for watertightness are estimated with computer simulation when the tightening torque of valve socket is in the range of $10{\sim}130N{\cdot}m$ in order to analyze the influence of valve socket screw section in accordance with the excessive tightening which is supposed to be the cause of water leakage from the synthetic resin piping for fire fighting application of sprinkler equipment, and for the sake of verifying this, adequate value of tightening torque and the value of the compression stress of rubber packing are investigated by examining the number of connected thread for each tightening torque, the deformation state of valve socket and rubber packing and conducting the water hammering test. The result of this test is expected to be utilized as the data required for revising the standard or technical criteria to prevent the water leakage of the synthetic resin piping for fire fighting application.

A Study on the Performance Evaluation of Fitting for Light-gauge Stainless Steel Pipe (경량 스테인리스 강관용 이음쇠의 성능평가에 관한 연구)

  • Nam, Jun-Seok;Park, Joo-Hwan;Min, Kyung-Tak;Kim, Yeob-Rae;Song, Chul-Gang
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.89-97
    • /
    • 2010
  • In recent fire protection system, the pipings should be light weighted, seismic proof and wrought with non-welding method. The light weighted stainless steel pipes and fittings, satisfying these requirements, are already used as a fire protection system in Germany, Netherland, Taiwan, Australia, United States and Japan. Accordingly, performance evaluation tests were carried out to determine whether or not the fittings can be used in the pipings. As the performance evaluation tests, we conducted vibration test, water hammering test, bending test and fire test. With the results of the tests, we concluded that the fittings can be used in the fire protection system, and that the life expectancy of the fittings exceeds that of buildings.

Solidification Analysis Characteristics of Back Flow Prevention Check Valve (역류방지 체크밸브의 응고해석 특성)

  • Yoon, Jung-In;Moon, Jung-Hyun;Son, Chang-Hyo;Lee, Jung-Jin
    • Journal of Power System Engineering
    • /
    • v.19 no.3
    • /
    • pp.69-74
    • /
    • 2015
  • Check valves used in vessels include shock-release function on piping system, aside from basic back flow prevention. However, proper and enough protection of system is not obtainable due to use of high-pressure and bulk fluids, resulting from enlargement of vessels. In this study, casting analysis of check valves protecting systems in flow path from water hammering or back flow is conducted, using Z-CAST program. Also, molten metal filling, flow analysis, solidification analysis and shrinkage cavity analysis are conducted. The main results are as following. Regarding filling of each risering, molten metal showed stable supply condition without being isolated. It was identified that the final solidification exists on risering, but shrinkage cavity possibly might happens at the point of isolation solidification.

A Study on the Propeller Blade Singing Place of an 86,000 Ton Deadweight Crude Oil Tanker (86,000톤 원유운반선 프로펠러 날개의 singing(명음) 발생위치 조사)

  • Dong-Hae Kim;Kyoon-Yang Chung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.3
    • /
    • pp.59-64
    • /
    • 1994
  • A study was conducted to investigate the propeller singing place of an 86, 000 ton Deadweight Crude Oil Tanker. In preliminary study, proper use of finite element analysis was verified by comparing with the result of hammering test in the air. Then the finite element analysis was carried out for the blade in the water and compared with the noise measurement during sea trial, which enabled to confirm the local resonances of blade structure. Result of the study showed that the singing occurred most probably at trailing edges on the blade tip over 95% of propeller diameter. Owing to edge cutting of a successfoul remdial action, the singing excitation forces seemed to be reduced whereas the vibration characteristics of the blade was not changed.

  • PDF

Wet Damping Estimation of the Segmented Hull Model using the Random Decrement Technique (랜덤 감쇠기법을 이용한 분할모형의 접수 감쇠계수 추정)

  • Kim, Yooil;Park, Sung-Gun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.4
    • /
    • pp.217-223
    • /
    • 2013
  • This paper presents the wet damping estimation of the segmented hull model using the random decrement technique together with the continuous wavelet transform. The tested 16 sea states are grouped together based on the speed of the ship in order to figure out the possible influence of the ship speed on the damping ratio. The measured time histories of vertical bending moment for each tested sea state were processed with random decrement technique to derive the free decay signal, from which the damping ratios are estimated. Also, the autocorrelation functions of the filtered signal were calculated and comparison was made with the free decay signal obtained from the random decrement technique. Then the wet damping ratios for each sea state group, as well as precise wet natural frequencies, are estimated by using continuous wavelet transform. It turned out that the wet natural frequencies derived from the measured signal did not show any significant discrepancy compared with those obtained by wet hammering test, whereas the damping ratio did. It was considered that the discrepancy of the damping ratio between in calm and moving water may be attributed to the viscous effects caused by dramatically different flow pattern and relative velocity between the vibrating structure and surrounding fluid particles.