• Title/Summary/Keyword: Water-Wall Tube

Search Result 156, Processing Time 0.027 seconds

Study on Plugging Criteria for Thru-wall Axial Crack in Roll Transition Zone of Steam Generator Tube (증기발생기 전열관 확관천이부위 축방향 관통균열의 관막음 기준에 관한 연구)

  • Park, Myeong-Gyu;Kim, Yeong-Jong;Jeon, Jang-Hwan;Kim, Jong-Min;Park, Jun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2894-2900
    • /
    • 1996
  • The stream generator tubes represent an integral part of a major barrier against the fission product release to the environment. So, the rupture of these tubes could permit flow of reactor coolant into the secondary system and injure the safety of reactor coolant system. Therefore, if the crack was detected during In-Service Inspection of tubes the cracked tube should be evaluated by the pulgging criteria and plugged or not. In this study, the fracture mechanics evaluation is carried out on the thru-wall axial crack due to Primary Water Stress Corrosion Cracking in the roll transition aone of steam generator tube to help the assurence the integrity of tubes and estabilish the plugging criteria. Due to the Inconel which is used as tube material is more ductile than others, the plastic instability repture theory was used to calculate the critical and allowable crack length. Based on Leak Before Break concept the leak rate for the critical crack length and the allowable leak rate are compared and the safety of tubes was given.

Study on Leak Rate of SCC Degraded Alloy 600 Tubings of PWRs

  • Hwang, Seong Sik;Kim, Joung Soo;Kasza, Ken E.;Park, Jangyul
    • Corrosion Science and Technology
    • /
    • v.3 no.6
    • /
    • pp.233-239
    • /
    • 2004
  • Primary water stress corrosion cracking of steam generator tubings occur on many tubes in pressurized water reactors(PWRs), and they are repaired using sleeves or plugs. In order to develop proper repair criteria, it is necessary to know the leak behavior of the tubes, which have stress corrosion cracks. Crack development tests were carried out on the tubes at room temperature, and leak rate and burst pressure were measured on the degraded tubes at room temperature and a high temperature. No leakage was detected on the tubes where 100 % through wall crack developed, at 1560 psi, which is an operating pressure difference of pressurized water reactors(PWRs). In some tests, leak rates of the tubes increased with time at a constant internal water pressure. A test tube showed a very small amount of leakage at 2700 psi in a high temperature pressure test at $282^{\circ}C$, but it disappeared after the pressure increased slightly. Even cracks are 100 % through wall, they need to open in order to reach a certain amount of leak rate at the operating pressure difference.

Numerical Analysis of Freezing Phenomena of Water around the Channel Tube of MF Evaporator (MF증발기 채널관 주위의 결빙현상에 대한 해석적 연구)

  • Park, Yong-Seok;Seong, Hong-Seok;Suh, Jeong-Se
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.114-120
    • /
    • 2020
  • In this study, the process of freezing around two consecutively arranged channel tubes used for evaporator heat exchange was numerically investigated. Numerical results confirmed that the vortex occurred between the front channel and the rear channel and also that the vortex occurred due to the rapid change of the channel at the rear of the rear channel. These vortices were found to play a role in reducing the ice layer to some extent by the growth of the ice layer at the front and rear of the channel tube. The freezing layer showed a tendency to gradually increase as it passed through the channel pipe. As the wall temperature in the channel pipe decreased, the thickness of the freezing layer increased. As the flow rate of water slowed, the thickness of the freezing layer became thicker. In particular, in the case of a slow flow rate of 0.03 m/s, the freezing layers of the front channel pipe and the rear channel pipe were connected to each other. The narrower the channel, the thinner the freezing layer was in both the front and rear channel tubes. It is found that these thin freezing layers are caused by the low thickness of the temperature boundary layer formed around the channel tube.

Flow Visualization of Pulsatile Flow in a Branching Tube using the PIV System and Numerical Analysis (PIV와 수치해석을 이용한 분지관내 맥동유동의 가시화)

  • Roh, Hyung-Woon;Suh, Sang-Ho;Yoo, Sang-Sin
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.535-540
    • /
    • 2000
  • The objective of the present study is to visualize the pulsatile flow fields by using three-dimensional computer simulation and the PIV system. A closed flow loop system was built for the steady and unsteady experiments. The Harvard pulsatile pump was used to generate the pulsatile pressure and velocity waveforms. Conifer powder as the tracing particles was added to water to visualize the flow field. Two consecutive particle images were captured by a CCD camera for the image processing. The cross-correlation method in combination with the moving searching area algorithm was applied for the image processing of the flow visualization. The pulsatile flow fields were visualized effectively by the PIV system in conjunction with the applied algorithm. The range validation and the area interpolation methods were used to obtain the final velocity vectors with high accuracy. The finite volume predictions were used to analyze three-dimensional flow patterns in the bifurcation model. The results of the PIV experiment and the computer simulation are in good agreement and the results show the recirculation zones and formation of the paired secondary flow distal to the apex of the bifurcated model. The results also show that the branch flow is pushed strongly to the inner wall due to the inertial force effect and helical motions are generated as the flow proceeds toward the outer wall.

  • PDF

Condensation heat transfer of R407C and R410A in a horizontal smooth tube (R407C 및 R410A의 수평원관내 응축열전달)

  • 서정현;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.633-641
    • /
    • 1999
  • Experiments were carried out to investigate the condensation heat transfer characteristics for R22 and its alternatives, R407C (R32/125/134a, 23/25/52wt%) and R410A (R32/125, 50/50wt%). A concentric tube heat exchanger was made to conduct condensation heat transfer tests. Mass flux and saturation temperature of refrigerants at the test section inlet were varied to get the corresponding heat transfer coefficients. Serial and parallel input of secondary fluid (water) were applied to the test subsections. Compared with existing correlations of condensation heat transfer, experimental heat transfer coefficients obtained in this study were generally higher than the predicted values, and mean absolute deviations from several correlations were shown. Wall subcooling was introduced to get a new correlation for condensation heat transfer coefficients by modifying Shah's equation. The RMS deviation of the measured heat transfer coefficients from the new correlation in this study for R22 is 9.9% and that for R407C and R410A are 10.2% and 14.6%, respectively.

  • PDF

Investigation of Maximum External Pressure of Helically Coiled Steam Generator Tubes with Axial and Circumferential Through-Wall Cracks (축방향 및 원주방향 관통균열이 존재하는 나선형 전열관의 파손 외압 평가)

  • Lim, Eun-Mo;Huh, Nam-Su;Choi, Shin-Beom;Yu, Je-Yong;Kim, Ji-Ho;Choi, Suhn
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3_1spc
    • /
    • pp.573-579
    • /
    • 2013
  • Once-through helically coiled steam generator tubes subjected to external pressure are of interest because of their application to advanced small- and medium-sized integral reactors, in which a primary coolant with a relatively higher pressure flows outside the tubes, while secondary water with a relatively lower pressure flows inside the tubes. Another notable point is that the values of the mean radius to thickness ratio of these steam generator tubes are very small, which means that a thick-walled cylinder is employed for these steam generator tubes. In the present paper, the maximum allowable pressure of helically coiled and thick-walled steam generator tubes with through-wall cracks under external pressure is investigated based on a detailed nonlinear three-dimensional finite element analysis. In terms of the crack orientation, either circumferential or axial through-wall cracks are considered. In particular, in order to quantify the effect of the crack location on the maximum external pressure, these cracks are assumed to be located in the intrados, extrados, and flank of helically coiled cylinders. Moreover, an evaluation is also made of how the maximum external pressure is affected by the ovality, which might be inherently induced during the tube coiling process used to fabricate the helically coiled steam generator tubes.

Liquid Film Thickness Measurement by An Ultrasonic Pulse Echo Method (초음파 Pulse-echo 방법에 의한 액체막 두께 측정)

  • Jong Ryul Park;Jong-Ryul Park;Se Kyung Lee
    • Nuclear Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.25-33
    • /
    • 1985
  • The main purpose of this work is to investigate the effects of the wall thickness, the ultrasonic frequency, and the acoustic impedance of wall material on the liquid-film thickness measurement by an ultrasonic pulse echo method. A series of liquid-film thickness measurements in a horizontal air-water stratified system was performed employing a plate-type and a tube-type test sections. Measurements were repeated changing (1) the wall thickness of the test section and (2) the transducer frequency. Also, in an effort to improve the accuracy of the measurement and to exam me the effect of acoustic impedance of wall material on the measurement by an ultrasonic technique, two different stand-off rods, one made of stainless steel and the other polyacrylate, were used in the liquid-film thickness measurement. These experimental results are discussed and compared with the actual film thicknesses.

  • PDF

An Experimental Study of Fouling Effect on the Heat Transfer Around a Tube in Staggered Tube Banks (엇갈림 관군에서 원관 주위의 열전달에 미치는 파울링 영향에 관한 실험적 연구)

  • Kim, Min-Su;Baek, Byeong-Jun;Park, Bok-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.11
    • /
    • pp.1478-1485
    • /
    • 2000
  • An experimental study has been performed to investigated the forced convection heat transfer characteristics of 6 circular cylinders in staggered arrangement in a cross flow of air. The water scale deposited on condenser wall of power plant was used to investigate the effect of roughness of scaled surfaces. The relative roughness*average diameter of scale/cylinder diameter) was in a range of k/d=0.0066, 0.0111, 0.0167, 0.0222 and 0.0278. The cylinder spacings(L/d) varies from 1.5 to 4.0 where L denote the cylinder spacings along and normal to the upstream uniform flow direction. The Reynolds number was varied in a range of 10, 000$\leq$ Re $\leq$ 50,000. The local and mean Nusselt numbers were investigated as a function of scale roughness, the cylinder spacing and Reynolds number. The results are compared with those of clean cylinder and inline tube bank, subsequently the mean fouling resistance over the entire circumference was estimated from those results as a function of scale roughness, the cylinder spacing and Reynolds number.

Experimental Study on Heat Transfer Characteristics of HFC134a for Enhanced Tubes Used in a Flooded Evaporator (HFC134a 만액식 증발전열관 외부형상 변화에 따른 열전달 특성실험)

  • Yang, Seung-Woo;Lee, Young-Su;Jeong, Jin-Hee;Kang, Yong-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.12
    • /
    • pp.971-976
    • /
    • 2006
  • The objectives of this paper are to study the characteristics of pool boiling heat transfer for enhanced tubes used in the evaporator of turbo chiller and to provide a guideline for optimum design of an evaporator using HFC134a. Three different enhanced tubes are tested at 4 different saturation temperatures. The wall super heated temperature difference ranges from $0.5^{\circ}C\;to\;3.5^{\circ}C$. The refrigerant, HFC134a evaporates on the outside of the tube while the chilled water flows inside the tube. This study provides experimental heat transfer coefficients for evaporation on the enhanced tubes. It is found that the turbo-II tube provides the highest heat transfer coefficient.

Seismic Analysis of Absorber Rod in KMRR Reactivity Control Mechanism (다목적연구로 반응도 제어장치의 제어봉에 대한 내진해석)

  • Cho, Yeong-Carp;Yoo, Bong;Kim, Tae-Ryong;Ahn, Kyu-Suk
    • Computational Structural Engineering
    • /
    • v.3 no.3
    • /
    • pp.141-146
    • /
    • 1990
  • This study is on a seismic analysis of absorber rod in KMRR Reactivity Control Mechanism. The model being studied is two coaxial tubes(control absorber rod and flow tube) immersed in the water and partially coupled(overlap) by water gap. The hydrodynamic mass effects by the water in each surrounding conditions are considered in the model. The natural frequencies, stresses and displacements of the system due to Safe Shutdown Earthquake are computed in the cases of in-phase modes and out-of-phase modes of two coaxial tubes. The results show that maximum stresses are well below the allowable limit but the maximum displacements at the ends of both tubes are so much that the absorber rod contacts with the flow tube(or surrounding wall).

  • PDF