• 제목/요약/키워드: Water-Wall Tube

검색결과 155건 처리시간 0.029초

Fast transport with wall slippage

  • Tang, Zhipeng;Zhang, Yongbin
    • Membrane and Water Treatment
    • /
    • 제12권1호
    • /
    • pp.37-41
    • /
    • 2021
  • This paper presents the multiscale calculation results of the very fast volume transport in micro/nano cylindrical tubes with the wall slippage. There simultaneously occurs the adsorbed layer flow and the intermediate continuum fluid flow which are respectively on different scales. The modeled fluid is water and the tube wall is somewhat hydrophobic. The calculation shows that the power loss on the tube no more than 1.0 Watt/m can generate the wall slippage even if the fluid-tube wall interfacial shear strength is 1 MPa; The power loss on the scale 104 Watt/m produces the volume flow rate through the tube more than one hundred times higher than the classical hydrodynamic theory calculation even if the fluid-tube wall interfacial shear strength is 1 MPa. When the wall slippage occurs, the volume flow rate through the tube is in direct proportion to the power loss on the tube but in inverse proportion to the fluid-tube wall interfacial shear strength. For low interfacial shear strengths such as no more than 1 kPa, the transport in the tube appears very fast with the magnitude more than 4 orders higher than the classical calculation if the power loss on the tube is on the scale 104 Watt/m.

Failure Investigation of Fire-Side Water-Wall Tube Boiler

  • Fatah, M.C.;Agustiadi, D.;Pramono, A.W.
    • Corrosion Science and Technology
    • /
    • 제20권5호
    • /
    • pp.242-248
    • /
    • 2021
  • Unforeseen failures of boilers in power plants may affect the continuation of electricity generation. Main failures in boilers are influenced by the tube material, tube position, boiler service temperature and pressure, and chemical composition of the feed water and coal. This investigation was intended to find answers on the causes and mechanism of failure of the fire-side boiler water-wall tubes, due to perforation and corrosion. The tube conformed to the material requirements in terms of its chemical composition and hardness. Microscopic examination showed ferrite and pearlite indicating no changes in its microstructure due to the temperature variation. SEM test showed a single layer and homogenous film density particularly on the area far from perforation. However, layers of corrosion product were formed on the nearby perforation area. EDX showed that there were Na, Ca, S, and O elements on the failed surface. XRD indicated the presence of Fe2O3 oxide. The failure mechanism was identified as a result of significant localized wall thinning of the boiler water wall-tube due to oxidation.

Evaporation of Water in an Aqueous Lithium Bromide Solution flowing over a Horizontal Tube

  • Kim, Dong-Kwan;Kim, Moo-Hwan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제9권3호
    • /
    • pp.57-62
    • /
    • 2001
  • Falling film heat transfer analyses with aqueous lithium bromide solution were performed to investigate the transfer characteristics of the copper tubes. Finned (knurled) tube and a smooth tube were selected as test specimens. Averaged generation fluxes of water and the heat flux were obtained. As the film flow rate of the solution increased, the generation fluxes of water decreased for both tubes due to the fact that the heat transfer resistance increased with the film thickness. The effect of the enlarged surface area at the knurled tube was supposed to be dominant at a small flow rate. The generation fluxes of water increased with the increasing degree of tube wall superheat. Nucleate boiling is supposed to occur at a wall superheat of 20K for a smooth tube, and at 10K for a knurled tube. The increased performance of the knurled tube was supposed to mainly come from the effect of the increased heating surface area.

  • PDF

유연운전에 따른 석탄화력보일러 수계통 튜브에서의 이상 유동가속부식(Two-Phase Flow Accelerated Corrosion) 고찰 (A Two-Phase Flow Accelerated Corrosion Study on Water Wall Tube of Coal-Fired Boiler According to Flexible Operation)

  • 김상호;이승민;이재홍
    • Corrosion Science and Technology
    • /
    • 제23권3호
    • /
    • pp.246-254
    • /
    • 2024
  • Recently, coal-fired power plants are experiencing many problems that they have never experienced before due to an increase in flexible operation. In particular, a two-phase flow accelerated corrosion on water wall tubes in a boiler has not been detected overseas or domestically. There is no response plan to deal with such corrosion problem either. However, oxide film damage and tube material corrosion due to a two-phase flow accelerated corrosion are being discovered on water wall boiler tubes of domestic coal-fired power plants recently. If this situation is severe, it can cause enormous damage such as tube rupture. Therefore, in this paper, in order to prepare a response plan for a two-phase flow accelerated corrosion on water wall tubes in the future, differences between a two-phase flow accelerated corrosion and a single-phase flow accelerated corrosion were investigated and an example of discovery of a two-phase flow accelerated corrosion on water wall tubes was presented.

동심원관 환상공간내의 완전히 발달된 층류유동에서 물의 결빙현상에 대한 해석 (Analysis of ice-formation phenomena for fully developed laminar water flow in concentric circular-tube annuli)

  • 서정세;노승탁
    • 대한기계학회논문집B
    • /
    • 제21권11호
    • /
    • pp.1552-1561
    • /
    • 1997
  • In this numerical study, it is investigated for the ice-formation phenomena for water flow in a concentric tube. The freezing layers of ice in both the inner and outer wall of a concentric tube are simultaneously considered. In the solution strategy, the complete set of governing equations in both the solid and liquid regions are resolved. Numerical results are obtained by varying the inner/outer wall temperatures and Reynolds number. The results show that the inner/outer wall temperatures have the great effect on the thickness of the solidification layer thereof. The shapes of ice layer in both the inner and outer wall can be expressed as a function of inverse Graetz number. As the wall temperature in inner or outer tube decreases, the heat transfer coefficients in both inner and outer ice layer surfaces increase absolutely.

함정용 패키지 에어콘 응축기 핀튜브(Cu-Ni 70/30) 누설파괴 원인 분석 (Failure Analysis of Condenser Fin Tubes of Package Type Air Conditioner for Navy Vessel)

  • 박형훈;황양진;이규환
    • 한국표면공학회지
    • /
    • 제49권5호
    • /
    • pp.439-446
    • /
    • 2016
  • In 2015, a fin tube (Cu-Ni 70/30 alloy) of package type heat exchanger for navy vessel was perforated through the wall which led to refrigerant leakage. This failure occurred after only one year since its installation. In this study, cause of the failure was determined based on available documents, metallographic studies and computational fluid dynamics simulation conducted on this fin tube. The results showed that dimensional gap between inserted plastic tube and inside wall of fin tube is the cause of the swirling turbulent stream of sea water. As a result of combination of swirling turbulence and continuing collision of hard solid particles in sea water, erosion corrosion has begun at the end of inserted plastic tube area. Crevice corrosion followed later in the crevice between the outer wall of plastic tube and inner wall of fin tube. It was found that other remaining tubes also showed the same corrosion phenomena. Thorough inspection and prompt replacement will have to be accomplished for the fin tubes of the same model heat exchanger.

유동층보일러 수냉벽튜브 결함평가를 위한 원격자장 스캐너 시뮬레이션에 관한 연구 (Simulation of Remote Field Scanner for Defect Evaluation of Water Wall Tube Within the Fluidized Bed Boiler)

  • 길두송;정계조;서정석;김학준;권찬울
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권2호
    • /
    • pp.145-150
    • /
    • 2020
  • 유동층보일러를 구성하는 요소 중 하나인 수냉벽튜브는 외부의 고온 연소 가스를 이용해 물을 증기로 가열하는 튜브군의 하나로써, 보일러를 이용한 전력생산에 중요한 역할을 담당하지만, 고온 가스 및 유동매체로 인해 마모 및 부식이 심하게 일어나면 누수가 발생하게 되고, 누수로 인한 2차 피해도 발생될 뿐만 아니라, 발전 효율이 현저히 떨어지게 되어 수냉벽튜브의 유지보수는 매우 중요하다. 본 연구에서는 원격장 기반의 발신자(Exciter) 센서 설계, 원격장 와전류 시스템 구성, 수냉벽튜브 외벽 결함평가를 목적으로 하였으며, 이를 위한 발신자 형상의 센서 설계를 시작으로, 수냉벽튜브의 크기, 재질, 주파수, Lift-Off (센서와 수냉벽튜브 사이의 거리) 등 여러 가지 요인에 따른 시험을 진행하여 그에 따른 최적의 발신자 센서를 설계하였다.

수평단관 상의 유하액막 열전달 (Falling Film Heat Transfer on a Horizontal Single Tube)

  • 김동관;김무환
    • 설비공학논문집
    • /
    • 제12권7호
    • /
    • pp.642-648
    • /
    • 2000
  • Falling film heat transfer analyses with aqueous lithium bromide solution were peformed to investigate the transfer characteristics of the copper tubes. Finned(knurled) tube and a smooth tube were selected as test specimens. Averaged generation fluxes of water and the heat transfer performances(heat flux, heat transfer coefficient) were obtained. The results of this work were compared with the data reported previously. As the film flow rate of the solution increased, the generation fluxes of water decreased for both tubes. The reason is estimated by the fact that the heat transfer resistance with the film thickness increased as the film flow rate increased. The effect of the enlarged surface area at the knurled tube was supposed to be dominant at a small flow rate. The generation fluxes of water increased with the increasing degree of tube wall superheat. Nucleate boiling is supposed to occur at a wall superheat of 20 K for a smooth tube, and at 10 K for a knurled tube. The heat transfer performance of the falling film was superior to pool boiling at a low wall superheat below 10 K for both tubes tested. The knurled tube geometry showed good performance than the smooth tube, and the increased performance was mainly came from the effect of the increased heating surface area.

  • PDF

이중벽관 증기발생기의 설계개념 기술개발 (Design Concept and Technology Development of a Double-Wall-Tube Steam Generator)

  • 남호윤;최병해;김종범
    • 대한기계학회논문집A
    • /
    • 제34권9호
    • /
    • pp.1217-1225
    • /
    • 2010
  • 소듐을 냉각재로 사용하는 고속로의 증기발생기에서는 소듐과 물의 화학적 반응을 최소화하는 것이 중요한 문제이다. 소듐과 물의 반응 가능성을 줄여 증기발생기의 신뢰성을 향상시키기 위한 한가지 방안으로 이중벽관을 전열관으로 사용하는 증기발생기를 개발하고 있다. 이 증기발생기에서 중요한 현안은 이중벽관에서의 열전달 성능을 향상시키는 문제와 원자로 운전 중에 소듐과 물 반응사고가 일어나기 전에 전열관의 파손을 감지하는 기술을 개발하는 것이다. 이 논문에서는 이 현안을 극복할 수 있는 방안을 제시하였고, 이 기술을 활용하여 증기발생기의 개념을 설계하였다. 또한 이 개념에 적용되는 이중벽관을 설계 및 예비 제작하여 기계적 시험을 수행하였다.

벽 비등모델을 이용한 과냉비등 유동에 대한 CFD 모의계산에서 벽 인접격자의 영향 (NEAR-WALL GRID DEPENDENCY OF CFD SIMULATION FOR A SUBCOOLED BOILING FLOW USING WALL BOILING MODEL)

  • 인왕기;신창환;전태현
    • 한국전산유체공학회지
    • /
    • 제15권3호
    • /
    • pp.24-31
    • /
    • 2010
  • boiling flow in vertical tube. The multiphase flow model used in this CFD analysis is the two-fluid model in which liquid(water) and gas(vapour) are considered as continuous and dispersed fluids, respectively. A wall boiling model is also used to simulate the subcooled boiling heat transfer at the heated wall boundary. The diameter and heated length of tube are 0.0154 m and 2 m, respectively. The system pressure in tube is 4.5 MPa and the inlet subcooling is 60 K. The near-wall grid size in the non-dimensional wall unit for lqiuid phase ($y^+_{w,l}$) was examined from 101 to 313 at the outlet boundary. The CFD calculations predicted the void distributions as well as the liquid and wall temperatures in tube. The predicted axial variations of the void fraction and the wall temperature are compared with the measured ones. The CFD prediction of the wall temperature is shown to slightly depend on the near-wall grid size but the axial void prediction has somewhat large dependency. The CFD prediction was found to show a better agreement with the measured one for the large near-wall grid, e.g., $y^+_{w,l}$ > 300 at the tube exit.