• Title/Summary/Keyword: Water-Depth Effect

Search Result 860, Processing Time 0.025 seconds

The Impact of Water Depth and Speed on Lower Muscles Activation During Exercise in Different Aquatic Environments

  • Gyu-sun, Moon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.169-178
    • /
    • 2024
  • This study aimed to investigate the effects of water depth and speed on the activation of lower muscles during squat exercises, utilizing electromyography(EMG). It involved ten male participants in there. Participants performed 30 squats over a minute at a speed of 60bpm and maximum speed squats until exhaustion within a minute. The Integrated electromyography(iEMG) readings for the rectus femoris showed statistically significant differences due to water depth and speed, with a significant interaction effect between depth and speed during squat exercises. The iEMG readings for the biceps femoris also showed statistically significant differences, with a significant interaction effect between depth and speed during squat exercises. The iEMG readings for the gastrocnemius showed statistically significant differences according to water depth and speed. However, the interaction effect of water depth and speed during squat exercises did not show a statistically significant difference. In contrast, the iEMG readings for the tibialis anterior demonstrated statistically significant differences, with a statistically significant interaction effect during squats. These findings suggest that water depth and speed positively influence the activation patterns of lower muscles. Therefore, appropriately tailored aquatic exercises based on water depth for individuals with musculoskeletal discomfort, including the elderly or those with physical impairments, can effectively reduce physical strain and enhance balance, as well as physical and perceptual aspects. It is concluded that such exercises could provide a safer and more effective method of exercise compared to ground-based alternatives.

Effect of Water Depth on the Performance of a Direct Drive Turbine for Wave Energy Converter (파력발전용 직접구동터빈의 성능에 미치는 수심의 영향)

  • Choi, Young-Do;Kim, Chang-Goo;Cho, Young-Jin;Kim, You-Taek;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.6
    • /
    • pp.38-45
    • /
    • 2008
  • Development of high efficiency turbine with good performance is one of the main topics in the field of developing wave energy converter. For the development and improvement of the turbine performance, the effect of wave condition on the turbine performance should be considered in detail. Also, water depth is an important factor because incident wave power to the turbine is considerably influenced by the wave particle amplitude of motion and the amplitude is closely related with the water depth. Therefore, in this study, the effect of water depth on the performance of a direct drive turbine(DDT) for wave energy converter is investigated using the DDT which is installed in two types of wave channel. The experimental results show that the DDT captures more wave energy under the condition of relatively shallow water depth. When the water depth is shallow, the horizontal water particle amplitude of motion becomes wider and thus, the water power toward the turbine becomes larger.

The effect of small forward speed on prediction of wave loads in restricted water depth

  • Guha, Amitava;Falzarano, Jeffrey
    • Ocean Systems Engineering
    • /
    • v.6 no.4
    • /
    • pp.305-324
    • /
    • 2016
  • Wave load prediction at zero forward speed using finite depth Green function is a well-established method regularly used in the offshore and marine industry. The forward speed approximation in deep water condition, although with limitations, is also found to be quite useful for engineering applications. However, analysis of vessels with forward speed in finite water depth still requires efficient computing methods. In this paper, a method for analysis of wave induced forces and corresponding motion on freely floating three-dimensional bodies with low to moderate forward speed is presented. A finite depth Green function is developed and incorporated in a 3D frequency domain potential flow based tool to allow consideration of finite (or shallow) water depth conditions. First order forces and moments and mean second order forces and moments in six degree of freedom are obtained. The effect of hull flare angle in predicting added resistance is incorporated. This implementation provides the unique capability of predicting added resistance in finite water depth with flare angle effect using a Green function approach. The results are validated using a half immersed sphere and S-175 ship. Finally, the effect of finite depth on a tanker with forward speed is presented.

Hydraulic Characteristics in the Movable Venturi Flume with Circular Cone (원뿔형 벤츄리수로의 수리특성)

  • Kim, Dae Geun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.2
    • /
    • pp.177-184
    • /
    • 2013
  • This study analyzed the hydraulic characteristics of a venturi flume with a circular cone using a 3-D numerical model which uses RANS(Reynolds-Averaged Navier-Stokes Equation) as the governing equation. The venturi flume with the circular cone efficiently measures the discharge in the low-flow to high-flow range and offers the advantage of accurate discharge measurements in the case of a low flow. With no influence of the tail-water depth, the stage-discharge relationship and the flow behaviors were analyzed to verify the numerical simulation results. Additionally, this study reviewed the effect of the tail-water depth on the flow. The stage-discharge relationship resulting from a numerical simulation in the absence of an effect by the tail-water depth showed a maximum margin of error of 4 % in comparison to the result of a hydraulic experiment. The simulation results reproduced the overall flow behaviors observed in the hydraulic experiment well. The flow starts to become influenced by the tail-water depth when the ratio of the tail-water depth to the total head exceeds approximately 0.7. As the ratio increases, the effect on the flow tends to grow dramatically. As shown in this study, a numerical simulation is effective for identifying the stage-discharge relationship of a venturi flume with various types of venturi bodies, including a venturi flume with a circular cone.

Effect of hydraulic lining-ground interaction on subsea tunnels (라이닝-지반 수리상호작용이 해저터널에 미치는 영향)

  • Shin, Jong-Ho;Park, Dong-In;Joo, Eun-Jung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.1
    • /
    • pp.49-57
    • /
    • 2008
  • One of the most important design concerns for undersea tunnels is to establish design water load and flow rate. These are greatly dependent on the hydraulic factors such as water head, cover depth, hydraulic boundary conditions. In this paper, the influence of the hydraulic design factors on the ground loading and the inflow rate was investigated using the coupled finite element method. A horse shoe-shaped tunnel constructed 30 m below sea bottom was adopted to evaluate the water head effect considering various water depth for varying hydraulic conditions and relative permeability between lining and ground. The effect of cover depth was analysed for varying cover depth with the water depth of 60 m. The results were considered in terms of pore water pressure, ground loading and flow rate. Ground loading increases with an increase in water head and cover depth without depending on hydraulic boundary conditions. This points out that in leaking tunnels an increase in water depth increases seepage force which consequently increases ground loading. Furthermore, it is identified that an increase in water head and cover depth increases the rate of inflow and a decrease in the permeability ratio reduces the rate of inflow considerably.

  • PDF

Effects of fended-Water Depth and Reclaimed Wastewater Irrigation on Paddy Rice Culture (담수심과 오수처리수 관개가 벼재배에 미치는 영향)

  • 윤춘경;황하선;정광욱;전지홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.4
    • /
    • pp.55-65
    • /
    • 2003
  • Pilot study was conducted to examine the effects of ponded-water depth and reclaimed wastewater irrigation on paddy rice culture. For the ponded-water depth effect, three treatments of shallow, traditional, and deep water depths were applied, and each treatment was triplicated. The irrigation water for the treatment pots was an effluent from constructed wetland system for sewage treatment, while the control pot was irrigated with tap water kept traditional ponded-water depth. Irrigation water quantity varied with ponded-water depth as expected and drainage water quantity also varied similarly, which implies that shallow irrigation might save irrigation water and also reduce environmental impacts on downstream water quality. Rice growth and production were not significantly affected by ponded-water depth within the experimental condition, instead there was an indication of increased production in shallow and deep ponded-water depths compared to the traditional practice. Raising drainage outlet to the adequate height in paddy dike might be beneficial to save water resources within the paddy field. There was no adverse effect observed in reclaimed wastewater irrigation on the rice production, and mean yield was even greater than the control pots with tap water irrigation although statistically not significant. Water-saving irrigation by shallow ponded-water depth, raising the outlet height in diked rice paddy fields, minimizing forced surface drainage by well-planned irrigation, and reclaimed wastewater irrigation are suggested to save water and protect water quality. However, deviation from traditional farming practices might affect rice growth in long term, and therefore, further investigations are recommended before full scale application.

Shallow Water Effect on Resistance Performance of Large Container Ship Based on CFD Analysis (천수 효과가 대형 컨테이너선의 저항 성능에 미치는 영향에 관한 전산유체역학 해석 연구)

  • Sun-kyu, Lee;Youngjun, You;Jinhae, Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.6
    • /
    • pp.345-354
    • /
    • 2022
  • It is easy for a ship passing through confined waters to be exposed in dangers of collisions and grounding due to different hydrodynamic responses. Since marine accidents can cause significant impacts on environments, global economy, and human lives, it is necessary to study the effect of shallow water on hydrodynamic performance of a ship. In this paper, the effect of water depth on resistance performance was investigated using CFD analysis as an initial study for improving navigational safety of a large container ship under confined waters. After a CFD set-up for deep water condition was validated and verified by comparing CFD analysis with model test results, CFD calculations according to ship speed and water depth were conducted. The features were investigated in terms of tendency and physical knowledge related to resistance performance. The increase of resistance due to shallow water effect was reviewed with empirical formula suggested from SWABE JIP. Speed loss due to shallow water effect was additionally reviewed from estimated delivered power according to ship speed and water depth.

The Effect of Forebody Forms on the Ship Motion in Water of Finite Depth (유한(有限)깊이의 물에서의 선체운동(船體運動) -선수선형(船首船型)의 영향(影響)-)

  • J.H.,Hwang;K.P.,Rhee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.13 no.1
    • /
    • pp.11-16
    • /
    • 1976
  • The effect of the bow shape on the ship motion response in longitudinal regular waves of water of finite depth is investigated by employing the strip theory. The two-dimensional hydrodynamic forces(added mass and damping) were calculated by close-fit method for water of finite depth. The models for investigation are U and V bow ship forms of block coefficient 0.8 with constant after body which were used by Yourkov [2] and recently by Kim [3] for their deep water investigations. The following results are obtained by the present numerical experiments. (1) It is confirmed that the damping coefficient of the V-bow ship is greater than that of U-bow ship and in consquence the amplitude of heave and pitch of V-bow ship is smaller than that of U-bow ship among longitudinal regular head waves in water of finite depth (2) The merit of the V-bow ship on the motion damping is more significant in heave than in pitch, and is decreasing with the shallowness of water depth. (3) The change of bow form gives little effect on the wave exciting force and moment compared with the motion responce.

  • PDF

The Finite Depth Effect on the Ship Motion in Longitudinal Regular Head Waves (종규칙파중(縱規則波中)에서 수심(水深)이 선체운동(船體運動)에 미치는 영향(影響))

  • J.H.,Hwang;S.J.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.12 no.2
    • /
    • pp.59-66
    • /
    • 1975
  • Recently, as the dimensions of energy carriers increase, especially in draft, a reliable prediction of the ship motions at finite depths of water becomes necessary. The purpose of this paper is to probe the effect of finite water depth on the hydrodynamic forces and ship motions, particularly heave and pitch, in longitudinal regular head waves, by comparing the experimental value of Freakes and Keay with the author's theoretical value obtained by applying the modified strip theory to the Mariner class ship. It is confirmed that generally the hydrodynamic coefficients in the equations of motion increase with decreasing water depth, and the wave exciting forces and moments decrease with decreasing water depth. Amplitudes of heave and pitch in longitudinal regular head waves decrease as the water depth in the range where the length of the incident wave is comparatively long. The effects of Froude Number on the hydrodynamic coefficients increase with decreasing water depth and is more noticeable in the case of heave than pitch. In heave, generally the discrepancy between the experimental value and the theoretical value is relatively small in the case of $F_n=O$, but it is very large in the case of $F_n=0.2$. It is considered that the trend stems from the ignorance of the three dimensional effect and the other effects due to shallowness of water on the hydrodynamic coefficients in the theoretical calculation. An extension of methods for calculating the two dimensional hydrodynamic forces to included the effect of forward speed should be recommended. It is required that more experimental works in finite water depths will be carried out for correlation studies between the theoretical calculation, according tp modified strip theory, and model experiments.

  • PDF

Effect on Maintenance of Vertical Profile of Stream for Triangle-Type Labyrinth Weir (삼각형 래버린스 위어의 수심유지 효과)

  • Lee, Seung-Oh;Kim, Young-Ho;Im, Jang-Hyuk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.3
    • /
    • pp.107-115
    • /
    • 2009
  • The labyrinth weir can be applied to increase the overflow rate, maintain constant water depth and improve water quality. This weir can be defined that the plane shape of overflow part is not straight line and is a kind of weir having overflow length increased by changing its plane shape. There are relatively few studies related to effect of maintaining the water depth which has been used to consider for various functions as hydraulic facilities and design conditions of labyrinth weirs. Thus, it is needed to conduct studies related to the maintenance of water depth by the labyrinth weir. This study was to provide fundamental data which may become a facilitator for more accurate and proper design of hydraulic facilities related to the maintenance of water depth. The ranges of constant water depth ($H_t/P=0.08\sim0.27$) were provided for the triangle type labyrinth weir, and the effect of maintaining water depth was analyzed using hydraulic laboratory experiments and 3D-numerical simulations(Flow-3D).