• Title/Summary/Keyword: Water wall

Search Result 1,662, Processing Time 0.029 seconds

Experimental Study on Hydrodynamic Characteristics of Dam Break Flow for Estimation of Green Water Loading (청수현상 추정을 위한 댐 붕괴 흐름의 유체동역학적 특성에 관한 실험적 연구)

  • Hyung Joon Kim;Jong Mu Kim;Jae Hong Kim;Kwang Hyo Jung;Gang Nam Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.2
    • /
    • pp.120-134
    • /
    • 2023
  • In this study, hydrodynamic characteristics of dam break flow were investigated by a series of experiments. The experiments were performed in a 2-D rectangular flume with obtaining instantaneous images of dam break flow to capture the free surface elevation, and pressure distributions on vertical wall and bottom of the flume. The initial water depth of the dam break flow was changed into 3 different heights, and the gate opening speed was changed during the experiments to study the effect of the gate speed in the dam break flow. Generation of dam break phenomena could be classified into three stages, i.e., very initial, relatively stable, and wall impact stages. The wall impact stage could be separated into 4 generation phases of wall impinge, run-up, overturning, and touchdown phases based on the deformation of the free surface. The free surface elevation were investigated with various initial water depth and compared with the analytic solutions by Ritter (1892). The pressures acting on the vertical wall and bottom were provided for the whole period of dam break flow varying the initial water depth and gate open speed. The measurement results of the dam break flow was compared with the hydrodynamic characteristics of green water phenomena, and it showed that the dam break flow could overestimate the green water loading based on the estimation suggested by Buchner (2002).

An Experimental Study on Vacuum Drying of Water-Saturated Porous Media (함수다공질층의 진공건조에 관한 실험적 연구 (Ⅰ))

  • Park, Hyeong-Jin;Kim, Gyeong-Geun;Kim, Myeong-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.5
    • /
    • pp.68-75
    • /
    • 1996
  • The vacuum drying characteristics of water-saturated porous media were studied experimentally. The water-saturated porous media, water-saturated sand layer, was heated by the isothermal bottom wall of the rectangular vessel. The vacuum drying rate and temperature distribution of the sand layer were measured and calculated under a variety of conditions of heated wall temperature, vacuum rate, and thickness of the test material. It was found that the drying rate due to the heat and mass teansfer is greatly influenced by the heated wall temperature, vacuum rate, and thickness of the test material.

  • PDF

Analysis of Wall-Thinning Effects Caused by Power Uprates in the Secondary System of a Nuclear Power Plant (원전 2차계통의 출력증강 운전에 따른 배관감육 영향 분석)

  • Yun, Hun;Hwang, Kyeongmo;Lee, Hyoseoung;Moon, Seung-Jae
    • Corrosion Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.135-140
    • /
    • 2016
  • Piping and equipment are degraded by flow-accelerated corrosion (FAC) in nuclear power plants. FAC causes numerous problems and nuclear utilities maintain programs to control FAC. The key parameters influencing FAC are hydrodynamic conditions, water chemistry, and effect of materials. Recently, a nuclear utility has planned slight power uprates in Korea. Operating conditions need to be changed in the secondary system according to power uprates. This study analyzed the effect of wall-thinning caused by power uprates. The change of operation data in the secondary cycle is reviewed, and wall-thinning rates are analyzed in the main lines. As a result, two phase (mixture of water and steam) lines have a greater impact than a water line under power uprate conditions. Also, the quality of steam is the most important factor for FAC in two phase lines.

A Study on the Change of Free Surface Vortex according to Intake Conditions in the Pump Sump (펌프 섬프장 흡입 조건에 따른 자유표면 보텍스 변동에 관한 연구)

  • Park, Young-Kyu;Li, Kui-Ming;Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.74-79
    • /
    • 2011
  • In this study the change of free surface vortex is represented at different times according to height of water and with or without curtain wall installation. The air volume fraction is investigated at each condition of water level and the influence about creation of vortex is analyzed. The height of sump intake is taken as 100mm and the water level is divided into 5 steps. The sump model is the TSJ model and the curtain wall is applied by HI standard of America. The results shows that the free surface vortex can be identified on the isotropic surface at air volume fraction 1%~5% and the vortices make an air column from the free surface to the sump intake and are created and destroyed repeatedly. In the higher water level, less air is absorbed into the intake pipe. After curtain wall installation, the suction rate of the air volume fraction is decreased by 6.7%. The result of the vortex motion according to time, works on a cycle.

Measurements of Velocity Distribution Function in Circular Open Channel Flows by Stereoscopic PIV (3차원 PIV에 의한 원형 개수로 유동의 속도분포 함수 측정)

  • Yoon, Ji-In;Sung, Jae-Yong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.5
    • /
    • pp.365-374
    • /
    • 2011
  • For the first time, the present study has measured the velocity distribution function in circular open channel flow in a three-dimensional shape using a stereoscopic PIV system. For a given channel slope, water depth was varied from 30% to 80% of the channel diameter. Then, the characteristics of the velocity distribution function was compared according to the change of the water depth. Unlike a rectangular channel, the present experiment exhibited quite different shapes in the velocity distribution function whether the water depth is higher than 50% or not. Especially, the position of maximum velocity in the central and side wall changes in a different manner for the water depth above 50%. By differentiating the velocity distribution function, local wall friction coefficient was evaluated as a function of wall position. If the water depth goes down, the difference between the maximum and minimum values in the local wall friction coefficient increases, and the averaged value a1so increases.

Experimental investigation of the excitation frequency effects on wall stress in a liquid storage tank considering soil-structure-fluid interaction

  • Diego Hernandez-Hernandez;Tam Larkin;Nawawi Chouw
    • Structural Engineering and Mechanics
    • /
    • v.89 no.4
    • /
    • pp.421-436
    • /
    • 2024
  • This research addresses experimentally the relationship between the excitation frequency and both hoop and axial wall stresses in a water storage tank. A low-density polyethylene tank with six different aspect ratios (water level to tank radius) was tested using a shake table. A laminar box with sand represents a soil site to simulate Soil-Structure Interaction (SSI). Sine excitations with eight frequencies that cover the first free vibration frequency of the tank-water system were applied. Additionally, Ricker wavelet excitations of two different dominant frequencies were considered. The maximum stresses are compared with those using a nonlinear elastic spring-mass model. The results reveal that the coincidence between the excitation frequency and the free-vibration frequency of the soil-tank-water system increases the sloshing intensity and the rigid-like body motion of the system, amplifying the stress development considerably. The relationship between the excitation frequency and wall stresses is nonlinear and depends simultaneously on both sloshing and uplift. In most cases, the maximum stresses using the nonlinear elastic spring-mass model agree with those from the experiments.

Pollutant Control using the Separation Wall between Stormwater and Sewage in a Combined Sewer System (우오수분리벽을 이용한 합류식 하수관거의 오염물질 제어효과)

  • Lee, Kuang Chun;Choi, Bong Choel;Lim, Bong Su
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.4
    • /
    • pp.461-469
    • /
    • 2004
  • This research is to determine the stormwater effects on sewer concentrations by measuring and comparing the flow and pollutant concentrations during dry and rainy periods in the existing BOX type combined sewer pipes. The monitoring was carried out in two sites, which are the Daesachen outfall having PE separation wall in BOX type combined sewer pipes and the Yongunchen outfall not having seperatioin wall. The average flow-weighted BOD concentraion in Yongunchen outfall is 2-fold lower than in Daesachen outfall because of the dilution effect from ravine water. However, the pollutant mass loading is 16 fold higher in Yongunchen outfall than in Daesachen outfall because of more flows. According to the research, the separation wall controls 52% pollutant mass during a storm period (11.5 mm/hr rainfall intensity). Therefore, the Yongunchen combined sewer system (CSS) need separation wall to control and to prevent more pollutant input in stream. In Daesachen area, the maximum sewer flow rate during a storm period measured about 10 fold bigger than average sewer flow during dry periods. Also the concentrations between rainy and dry periods increase approximately 33 fold for BOD and 120 fold for SS. In Yongunchen area, it increases about 9 fold for the maximum flow rate, 18 fold for BOD and 22 fold for SS during a storm. Therefore, the research is concluded that the separation wall between stromwater (or ravine water) and sewage can decrease the dilution effect in CSS and control the pollutant loading.

Study on Cause and Effect of SG Feed Water Ring Through-Wall Hole (증기발생기 급수링 관통손상 원인 및 영향 고찰)

  • Lee, Sung Ho;Lee, Yo Seob
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.1
    • /
    • pp.61-68
    • /
    • 2015
  • The function of Feed Water Ring is to provide the flow path from Feedwater Nozzle to inside of SG(steam generator). Significant amounts of general FAC on the outside of the Feed Water Ring are not likely due to the low flow velocities in this area. However, on the interior of the Feed Water Ring, there may be areas of local higher flow velocity which could lead to higher FAC rates. These may include the inlet tee from the Feedwater Nozzle into the Feed Water Ring, the areas where the Feed Water Ring changes diameter, and especially the entrance area to the J-Nozzles. In this paper, the results of root cause analysis of through-wall hole observed at domestic WH 51F SG Feed Water Ring and its effect on the integrity and performance of SG are described. And, the maintenance strategy for WH 51F SG Feed Water Ring and the monitoring strategy for Downcomer Feed Water Ring of CE System 80 SG are presented.

Countermeasure to Prevent Seawater Intrusion on Coastal Area (해안지역 지하수댐 염수침입 방지기술 개선 방안)

  • 부성안;이기철;김진성;정교철;고양수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.148-154
    • /
    • 2002
  • Groundwater Dam is one of the reliable techniques to get huge amount of groundwater abstraction for municipal, agricultural, drinking, industrial water supply system. It can be a major technique to solve water shortage problems when it based on the sufficient watershed, proper topology, and adequate aquifer distribution and pollution control. It is suggested that the two consecutive underground wall in the coastal area to prevent seawater intrusion beneath a single wall.

  • PDF

A Study on the Wall Thinning Range according to modified Extraction Nozzle Design in High Pressure Feedwater Heater (고압 급수가열기 추기노즐 설계변경에 따른 감육 범위 연구)

  • Park, Sang-Hoon;Yoo, Il-Gon;Kim, Kyung-Hoon;Hwang, Kyeong-Mo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.847-852
    • /
    • 2009
  • Feedwater heaters of many nuclear power plants have recently experienced severe wall thinning damange, which will increase as operating time progresses. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle inside feed-water heater installed downstream of the turbine extraction stream line. At that point, the extract steam from the turbine is two phase fluid at high temperature, high pressure, and high speed. Since it flows to reverse direction after impinging the impingement baffle, the shell wall of feedwater heaters may be affected by flow-accelerated corrosion. In this paper, to compare wall thinning range according to change entrance nozzle diameter and position with reference numerical analysis model's wall thinning range, various numerical analysis models applied. In case of changing diameter, four different diameter is applied. And a side of nozzle position, two different position-vertical type and parallel type-is applied. And then this paper describes operation of numerical analysis which is composed similar condition with real feed water heater. In conclusion, this study shows effective design for shall wall thinning by changing nozzle diameter and position.

  • PDF